首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   48篇
  国内免费   11篇
测绘学   30篇
大气科学   183篇
地球物理   252篇
地质学   444篇
海洋学   34篇
天文学   138篇
综合类   6篇
自然地理   54篇
  2023年   6篇
  2022年   2篇
  2021年   27篇
  2020年   27篇
  2019年   25篇
  2018年   38篇
  2017年   31篇
  2016年   60篇
  2015年   47篇
  2014年   61篇
  2013年   79篇
  2012年   62篇
  2011年   76篇
  2010年   59篇
  2009年   68篇
  2008年   60篇
  2007年   44篇
  2006年   56篇
  2005年   48篇
  2004年   31篇
  2003年   23篇
  2002年   27篇
  2001年   23篇
  2000年   18篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   7篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   8篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有1141条查询结果,搜索用时 15 毫秒
751.
We have jointly analysed space gravimetry data from the GRACE space mission, satellite altimetry data and precipitation over the East African Great Lakes region, in order to study the spatiotemporal variability of hydrological parameters (total water storage, lake water volume and rainfall). We find that terrestrial water storage (TWS) from GRACE and precipitation display a common mode of variability at interannual time scale, with a minimum in late 2005, followed by a rise in 2006–2007. We argue that this event is due to forcing by the strong 2006 Indian Ocean Dipole (IOD) on East African rainfall. We also show that GRACE TWS is linked to the El Niño-Southern Oscillation cycle. Combination of the altimetry-based lake water volume with TWS from GRACE over the lakes drainage basins allows estimating soil moisture and groundwater volume variations. Comparison with the WGHM hydrological model outputs is performed and discussed.  相似文献   
752.
We performed a LA-ICP-MS study of refractory lithophile trace elements in 32 individual objects selected from a single section of the reduced CV3 chondrite Leoville. Ingredients sampled include ferromagnesian type I and II chondrules, Al-rich chondrules (ARCs), calcium-aluminum-rich inclusions (CAIs), a single amoeboid olivine aggregate (AOA), and matrix. The majority of rare earth element (REE) signatures identified are either of the category “group II” or they are relatively flat, i.e., more or less unfractionated. Data derived for bulk Leoville exhibit characteristics of the group II pattern. The bulk REE inventory is essentially governed by those of CAIs (group II), ARCs (flat or group II), type I chondrules (about 90% flat, 10% group II), and matrix (group II). Leoville matrix also shows a superimposed positive Eu anomaly. The excess in Eu is possibly due to terrestrial weathering. The group II pattern, however, testifies to volatility-controlled fractional condensation from a residual gas of solar composition at still relatively high temperature. In principle, this signature (group II) is omnipresent in all types of constituents, suggesting that the original REE carrier of all components was CAI-like dust. In addition, single-element anomalies occasionally superimposing the group II signature reveal specific changes in redox conditions. We also determined the bulk chemical composition of all objects studied. For Mg/Si, Mg/Fe, and Al/Ca, Leoville's main ingredients—type I chondrules and matrix—display a complementary relationship. Both components probably formed successively in the same source region.  相似文献   
753.
NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types: (a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), (b) lobate patches with well-defined edges (nicknamed “pumpkin patches”), and (c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed “Leslie feature” first identified by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Several possible options for the composition of the orange material are investigated including, cumulate eucrite layer exposed during impact, metal delivered by impactor, olivine–orthopyroxene mixture and impact melt. Based on our analysis, the orange material on Vesta is unlikely to be metal or olivine (originally proposed by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157)). Analysis of the elemental composition of Oppia ejecta blanket with GRaND suggests that its orange material has ∼25% cumulate eucrite component in a howarditic mixture, whereas two other craters with orange material in their ejecta, Octavia and Arruntia, show no sign of cumulate eucrites. Morphology and topography of the orange material in Oppia and Octavia ejecta and orange patches suggests an impact melt origin. A majority of the orange patches appear to be related to the formation of the Rheasilvia basin. Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.  相似文献   
754.
We report on the discovery of a new shergottite from Tunisia, Ksar Ghilane (KG) 002. This single stone, weighing 538 g, is a coarse‐grained basaltic shergottite, mainly composed of maskelynitized plagioclase (approximately 52 vol%) and pyroxene (approximately 37 vol%). It also contains Fe‐rich olivine (approximately 4.5 vol%), large Ca‐phosphates, including both merrillites and Cl‐apatites (approximately 3.4 vol%), minor amounts of silica or SiO2‐normative K‐rich glass, pyrrhotite, Ti‐magnetite, ilmenite, and accessory baddeleyite. The largest crystals of pyroxene and plagioclase reach sizes of approximately 4 to 5 mm. Pyroxenes (Fs26–96En5–50Wo2–41). They typically range from cores of about Fs29En41Wo30 to rims of about Fs68En14Wo17. Maskelynite is Ab41–49An39–58Or1–7 in composition, but some can be as anorthitic as An93. Olivine (Fa91–96) occurs mainly within symplectitic intergrowths, in paragenesis with ilmenite, or at neighboring areas of symplectites. KG 002 is heavily shocked (S5) as indicated by mosaic extinction of pyroxenes, maskelynitized plagioclase, the occurrence of localized shock melt glass pockets, and low radiogenic He concentration. Oxygen isotopes confirm that it is a normal member of the SNC suite. KG 002 is slightly depleted in LREE and shows a positive Eu anomaly, providing evidence for complex magma genesis and mantle processes on Mars. Noble gases with a composition thought to be characteristic for Martian interior is a dominant component. Measurements of 10Be, 26Al, and 53Mn and comparison with Monte Carlo calculations of production rates indicate that KG 002 has been exposed to cosmic rays most likely as a single meteoroid body of 35–65 cm radius. KG 002 strongly resembles Los Angeles and NWA 2800 basaltic shergottites in element composition, petrography, and mineral chemistry, suggesting a possible launch‐pairing. The similar CRE ages of KG 002 and Los Angeles may suggest an ejection event at approximately 3.0 Ma.  相似文献   
755.
Paleoenvironmental records extending well into the last glacial period are scarce in the steppe regions of southern South America. Here, we present a continuous record for the past 55 ka from the maar lake Laguna Potrok Aike (51°58′ S, 70°23′ W, southern Patagonia, Argentina). Previous studies on a sedimentary core from a lake level terrace near the northern margin of the lake covered parts of Oxygen Isotope Stage (OIS) 3 (59–29 ka) whereas a second core from the centre of the basin comprised the last 16 ka. Tephrostratigraphical constraints and OSL ages from a third core located below the lake level terrace provide the crucial piece to close the gap between the previous coring sites. High-resolution XRF and magnetic susceptibility as well as grain size data indicate a positive hydrological balance alongside with relatively high aeolian activity during the glacial which is contemporaneous with increased dust fluxes in Antarctica. This is therefore the first evidence for contemporaneity of aeolian deposition in both the target area (Antarctica) and in the major source area of Patagonia. During the Holocene climatic conditions driving sediment deposition seem to have been more variable and less dominated by wind compared to glacial times. The identification of a minor lake level lowering at approximately 4 cal ka BP allows to refine earlier paleoenvironmental reconstructions for the Holocene. Within error margins the OSL ages are consistent with published radiocarbon-dated records offering hence a valuable tool for further studies of the sediments from Laguna Potrok Aike. The new chronology confirms the age of three tephra layers up to now only found in Laguna Potrok Aike sediments and ascribed to OIS 3.  相似文献   
756.
Past, present, and forthcoming planetary rover missions to Mars and other planetary bodies are equipped with a large number of scientific cameras. The very large number of images resulting from this, combined with tight time constraints for navigation, measurements, and analyses, pose a major challenge for the mission teams in terms of scientific target evaluation. Shatter cones are the only macroscopic evidence for impact-induced shock metamorphism and therefore impact craters on Earth. The typical features of shatter cones, such as striations and horsetail structures, are particularly suitable for machine learning methods. The necessary training images do not exist for such a case; therefore, we pursued the approach of producing them artificially. Using PRo3D, a viewer developed for the interactive exploration and geologic analysis of high-resolution planetary surface reconstructions, we virtually placed shatter cones in 3-D background scenes processed from true Mars rover imagery. We use PRo3D-rendered images of such scenes as training data for machine learning architectures. Terrestrial analog studies in Ethiopia supported our lab work and were used to test the resulting neural network of this feasibility study. The result showed that our approach with shatter cones in artificial Mars rover scenes is suitable to train neural networks for automatic detection of shatter cones. In addition, we have identified several aspects that can be used to improve the training of the neural network and increase the recognition rate. For example, using background data with a higher resolution in order to have equal resolution of object (shatter cone) and Martian background and increase the number of objects that can be placed in the training data set. Also using better lighting reconstructions and a better radiometric adaption between object and Martian background would further improve the results.  相似文献   
757.
758.
The knowledge on particle deposition in streams is mainly based on investigations in mountain streams. No data exist from low‐gradient sand‐bed streams that largely differ in the morphological and hydraulic factors proposed to affect deposition. To identify physical control on particle deposition in low‐gradient streams, we assessed deposition of very fine and ultra fine organic particulate matter in 18 sand‐bed stream reaches. We added particles derived from lake sediment and assessed the mean transport distance SP and the deposition velocity vdep. Additionally, reach hydraulics were estimated by injections of a conservative solute tracer (NaCl). Among the low‐gradient streams, particle deposition kinetics were variable but similar to deposition in mountain streams. SP was solely related to the flow velocity. This relation was confirmed when comprising published data on deposition of fine organic particles. An association between particle deposition and transient storage factors was insignificant. We found significance of the transient storage to SP only for repeated measures within a single reach, when flow velocity and benthic conditions were nearly constant. Measured vdep/vfall ratios were much larger than unity in most reaches. Evidence from this relation suggests that the vertical transport of very fine and ultra fine organic particulate matter through the water column was caused mainly by vertical mixing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
759.
760.
Mechanism reductions of the detailed aqueous phase chemistry mechanism CAPRAM 3.0i are performed. Manual methods and automatic techniques are both applied in order to provide a less computationally intensive mechanism which is operational in regional chemistry transport models (CTMs). The finally reduced mechanism contains less than 200 reactions (4 times smaller than the detailed CAPRAM 3.0i) and describes the main characteristics of inorganic and organic aqueous phase processes occurring in tropospheric warm clouds. Most of the chemical reduction potential is realized in the CAPRAM 3.0i organic chemistry. The number of aqueous phase species decreases from 380 in the full mechanism to 130 in the final reduced version. The calculated percentage deviations between the full and reduced mechanism are on average below 5% for the most important organic and inorganic target compounds such as oxidants, inorganic and organic acids, carbonyls and alcohols. Comparisons of the required CPU times between the full and reduced mechanisms show reductions of approximately 40%. 2-D test simulations with the CTM MUSCAT were performed using prescribed meteorological conditions in order to examine the applicability of the reduced mechanism at regional scale. Simulations with the reduced CAPRAM 3.0i mechanism and a much less complex mechanism with only limited inorganic chemistry (INORG) were compared to evaluate the effects of more detailed chemistry. The model results show large differences in the level of oxidants and the inorganic and organic mass processing. Prospectively, the reduced mechanism represents the basis for studying aerosol cloud processing effects at regional scale with future CTMs and will allow more adequate interpretation of field data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号