首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1101篇
  免费   55篇
  国内免费   11篇
测绘学   30篇
大气科学   189篇
地球物理   272篇
地质学   450篇
海洋学   36篇
天文学   128篇
综合类   6篇
自然地理   56篇
  2023年   6篇
  2022年   2篇
  2021年   28篇
  2020年   27篇
  2019年   28篇
  2018年   38篇
  2017年   30篇
  2016年   60篇
  2015年   48篇
  2014年   64篇
  2013年   81篇
  2012年   62篇
  2011年   81篇
  2010年   60篇
  2009年   73篇
  2008年   58篇
  2007年   44篇
  2006年   57篇
  2005年   49篇
  2004年   35篇
  2003年   28篇
  2002年   29篇
  2001年   22篇
  2000年   14篇
  1999年   19篇
  1998年   13篇
  1997年   11篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   7篇
  1991年   6篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1985年   4篇
  1984年   5篇
  1983年   3篇
  1980年   2篇
  1979年   3篇
  1974年   2篇
  1965年   1篇
  1962年   1篇
  1960年   1篇
  1958年   1篇
  1957年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有1167条查询结果,搜索用时 19 毫秒
881.
The effect of surface phenomena occurring at the interfaces between immiscible fluids and a solid on the seismic attributes of partially saturated rocks has not yet been fully studied. Meanwhile, over the past two decades considerable progress has been made in the physics of wetting to understand effects such as contact line friction, contact line pinning, contact angle hysteresis, and equilibrium contact angle. In this paper, we developed a new rock physics model considering the aforementioned effects on seismic properties of the rock with a partially saturated plane-strain crack. We demonstrated that for small wave-induced stress perturbations, the contact line of the interface meniscus will remain pinned, while the meniscus will bulge and change its shape through the change of the contact angles. When the stress perturbation is larger than a critical value, the contact line will move with advancing or receding contact angle depending on the direction of contact line motion. A critical stress perturbation predicted by our model can be in the range of ∼102−104 Pa, that is typical for linear seismic waves. Our model predicts strong seismic attenuation in the case when the contact line is moving. When the contact line is pinned, the attenuation is negligibly small. Seismic attenuation is associated with the hysteresis of loading and unloading bulk moduli, predicted by our model. The hysteresis is large when the contact line is moving and negligibly small when the contact line is pinned. Furthermore, we demonstrate that the bulk modulus of the rock with a partially saturated crack depends also on the surface tension and on the contact angle hysteresis. These parameters are typically neglected during calculation of the effecting fluid moduli by applying different averaging techniques. We demonstrate that contact line friction may be a dominant seismic attenuation mechanism in the low frequency limit (<∼10 Hz) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow.  相似文献   
882.
The magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense bacteria were investigated by means of static and dynamic magnetic analyses and ferromagnetic resonance spectroscopy. The nano-sized magnetosomes are generally in a stable single-domain state, but magnetosomes smaller than 30 nm characteristic of superparamagnetic magnetite particles were also found. Alternating current (AC) susceptibility indicates that all magnetosomes are blocked below 150 K. At room temperature the anisotropy of M. gryphiswaldense is dominated by the shape of the magnetosome chains. Low-temperature ferromagnetic resonance (FMR) spectroscopy indicates that this dominant shape anisotropy can affect the detection of the Verwey transition at 100 K. The static and dynamic magnetic analyses show that the Verwey transition is smeared and that our magnetotactic bacteria fail the Moskowitz test. This failure is explained by the biomineralization of non-stoichiometric magnetosomes. This interpretation is based on the increase in high-field susceptibility and the distinct peak in the out-of-phase component of the AC susceptibility below 50 K. These results are attributed to freezing of spins associated with defect structures in the core and at the surface of nano-sized magnetosomes. The results obtained from M. gryphiswaldense demonstrate that intrinsic properties of nano-sized magnetosomes are significantly influenced by non-stoichiometry and by the anisotropy excited from their arrangement in the bacteria.  相似文献   
883.
884.
885.
886.
Fourier transform infrared (FTIR) spectroscopy and cathodoluminescence (CL) imaging techniques, combined with electron microprobe analyses, have been used to determine the physical state of feldspathic phases that have been subject to varying levels of shock in the grouped lunar meteorites Miller Range 090034, 090070, and 090075. Six feldspathic phases have been identified based on spectral, textural, and chemical properties. A specific infrared wavelength band ratio (1064/932 cm?1 equivalent to 9.40/10.73 μm), chosen because it can distinguish between some of the feldspathic phases, can be used to estimate the pressure regimes experienced by these phases. In addition, FTIR spatial mapping capabilities allow for visual comparison of variably shocked phases within the samples. By comparing spectral and compositional data, the origin and shock history of this lunar meteorite group has been determined, with each of the shocked feldspathic phases being related to events in its geological evolution. As such, we highlight that FTIR spectroscopy can be easily employed to identify shocked feldspathic phases in lunar samples; estimate peak shock pressures; and when compared with chemical data, can be used to investigate their shock histories.  相似文献   
887.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   
888.
Point data derived from drilling logs must often be regionalized. However, aquifers may show discontinuous surface structures, such as the offset of an aquitard caused by tectonic faults. One main challenge has been to incorporate these structures into the regionalization process of point data. We combined ordinary kriging and inverse distance weighted (IDW) interpolation to account for neotectonic structures in the regionalization process. The study area chosen to test this approach is the largest porous aquifer in Austria. It consists of three basins formed by neotectonic events and delimited by steep faults with a vertical offset of the aquitard up to 70 m within very short distances. First, ordinary kriging was used to incorporate the characteristic spatial variability of the aquitard location by means of a variogram. The tectonic faults could be included into the regionalization process by using breaklines with buffer zones. All data points inside the buffer were deleted. Last, IDW was performed, resulting in an aquitard map representing the discontinuous surface structures. This approach enables one to account for such surfaces using the standard software package ArcGIS®; therefore, it could be adopted in many practical applications.  相似文献   
889.
A central target in Earth sciences is the study of deformation at various depth levels within the Earth. Seismology has offered a remarkable tool for doing this via seismic anisotropy. It is however not always clear how to interpret those observations. A question of interest is to understand the relation between the deformation of the mantle and the crust, and in studying the relation between the two. Mantle deformation is expressed in seismic anisotropy. In this paper we seek an objective way of extracting information about crustal fabric as well, to be able to compare with seismic anisotropy. The magnetization of crustal rocks offers an attractive possibility for doing this. We thus explore the use of magnetic data, and we compare magnetic crustal fabric orientation with mantle fabric observations from seismic anisotropy. We apply our technique to the North American craton for which we have an excellent magnetic dataset, and we show that there is a clear relation between crustal and mantle fabric for the cratonic region. This has important implications for crustal formation, and for interpreting seismic anisotropy observations.  相似文献   
890.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号