首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77191篇
  免费   933篇
  国内免费   1502篇
测绘学   2568篇
大气科学   6132篇
地球物理   14699篇
地质学   30979篇
海洋学   5721篇
天文学   13363篇
综合类   2279篇
自然地理   3885篇
  2021年   222篇
  2020年   283篇
  2019年   280篇
  2018年   7128篇
  2017年   6473篇
  2016年   4455篇
  2015年   942篇
  2014年   985篇
  2013年   1978篇
  2012年   2781篇
  2011年   5905篇
  2010年   5129篇
  2009年   5864篇
  2008年   4843篇
  2007年   5716篇
  2006年   1539篇
  2005年   1998篇
  2004年   1912篇
  2003年   1917篇
  2002年   1532篇
  2001年   1058篇
  2000年   1074篇
  1999年   948篇
  1998年   867篇
  1997年   849篇
  1996年   727篇
  1995年   649篇
  1994年   566篇
  1993年   521篇
  1992年   512篇
  1991年   484篇
  1990年   482篇
  1989年   422篇
  1988年   403篇
  1987年   452篇
  1986年   434篇
  1985年   525篇
  1984年   587篇
  1983年   561篇
  1982年   519篇
  1981年   481篇
  1980年   458篇
  1979年   398篇
  1978年   412篇
  1977年   358篇
  1976年   329篇
  1975年   337篇
  1974年   337篇
  1973年   338篇
  1972年   201篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
471.
Garnet-bearing schists from the Waterville Formation of south-central Maine provide an opportunity to examine the factors governing porphyroblast size over a range of metamorphic grade. Three-dimensional sizes and locations for all garnet porphyroblasts were determined for three samples along the metamorphic field gradient spanning lowest garnet through sillimanite grade, using high-resolution X-ray computed tomography. Comparison of crystal size distributions to previous data sets obtained by stereological methods for the same samples reveals significant differences in mode, mean, and shape of the distributions. Quantitative textural analysis shows that the garnets in each rock crystallized in a diffusion-controlled nucleation and growth regime. In contrast to the typical observation of a correlation between porphyroblast size and position along a metamorphic field gradient, porphyroblast size of the lowest-grade specimen is intermediate between the high- and middle-grade specimens’ sizes. Mean porphyroblast size does not correlate with peak temperatures from garnet-biotite Fe-Mg exchange thermometry, nor is post-crystallization annealing (Ostwald Ripening) required to produce the observed textures, as was previously proposed for these rocks. Robust pseudosection calculations fail to reproduce the observed garnet core compositions for two specimens, suggesting that these calc-pelites experienced metasomatism. For each of these two specimens, Monte Carlo calculations suggest potential pre-metasomatism bulk compositions that replicate garnet core compositions. Pseudosection analyses allow the estimation of the critical temperatures for garnet growth: ∼481, ∼477, and ∼485°C for the lowest-garnet-zone, middle-garnet-zone, and sillimanite-zone specimens, respectively. Porphyroblast size appears to be determined in this case by a combination of the heating rate during garnet crystallization, the critical temperature for the garnet-forming reaction and the kinetics of nucleation. Numerical simulations of thermally accelerated, diffusion-controlled nucleation, and growth for the three samples closely match measured crystal size distributions. These observations and simulations suggest that previous hypotheses linking the garnet size primarily to the temperature at the onset of porphyroblast nucleation can only partially explain the observed textures. Also important in determining porphyroblast size are the heating rate and the distribution of favorable nucleation sites.  相似文献   
472.
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
473.
Water management and engineering in the karstic High Atlas of Morocco are difficult tasks under the prevailing geological, hydrogeological, geomorphological, vegetational and climatic conditions. It is important to be able to understand and predict the characteristics and availability of water for future water planning in the region under changing climatic and agricultural conditions. An interdisciplinary analysis of problems and adequate hydrological modelling tools developed by geologists, hydrologists and biologists are necessary. The karst areas of the High Atlas Mountains are characterised by impermeable triassic basalt underlying substantial subsurface reservoirs with high potential discharge rates. The karst groundwater aquifers are extensive but largely unknown in dimension, probably with a hierarchical network of groundwater flow paths. It is estimated that approximately 70% of the surface water is directly lost to groundwater. Steep landslide- and debris flow prone slopes exist next to coarse-grained, highly porous river beds. Infrequent, high intensity rainfall or snowmelt causes a particularly high flood risk to these karst areas. In addition, agriculture and land use changes have degraded the karst areas. The most important driving forces for degradation include permanent overgrazing even during droughts and the use of firewood by a continually growing population. Large scale degradation of vegetation has occurred in the oro-mediterranean (mountainous Mediterranean) zone, between 2600 and 3400 m which coincides with the most important zone for karstic groundwater creation. The combination of high amounts of groundwater flow and rapid surface flow due to sparse vegetation has increased the problems of flood flow.  相似文献   
474.
Maps showing the potential for soil erosion at 1:100,000 scale are produced in a study area within Lebanon that can be used for evaluating erosion of Mediterranean karstic terrain with two different sets of impact factors built into an erosion model. The first set of factors is: soil erodibility, morphology, land cover/use and rainfall erosivity. The second is obtained by the first adding a fifth factor, rock infiltration. High infiltration can reflect high recharge, therefore decreasing the potential of surface runoff and hence the quantity of transported materials. Infiltration is derived as a function of lithology, lineament density, karstification and drainage density, all of which can be easily extracted from satellite imagery. The influence of these factors is assessed by a weight/rate approach sharing similarities between quantitative and qualitative methods and depending on pair-wise comparison matrix.The main outcome was the production of factorial maps and erosion susceptibility maps (scale 1:100,000). Spatial and attribute comparison of erosion maps indicates that the model that includes a measure of rock infiltration better represents erosion potential. Field investigation of rills and gullies shows 87.5% precision of the model with rock infiltration. This is 17.5% greater than the precision of the model without rock infiltration. These results indicate the necessity and importance of integrating information on infiltration of rock outcrops to assess soil erosion in Mediterranean karst landscapes.  相似文献   
475.
The current study provides an investigation of abiotic reduction of an oversaturated uranyl solution driven by iron nanoparticle oxidation. The reactivity of nano-scale zero-valent iron (ZVI) under mildly oxic conditions (1.2% O2 and 0.0017% CO2) was studied in 1000 ppm uranyl solution in the pH range 3-7, at reaction times from 10 min to 4 h. Reductive precipitation of UO2 was observed as the main process responsible for the removal of uranium from solution with the kinetics of reaction becoming increasingly favourable at higher pH. Despite working with an oversaturated uranium solution, the precipitation of UO2 occurred in preference to precipitation of UO3·2H2O (metaschoepite) at reaction times between 1 and 4 h and for uranyl solutions initially set up at pH ?5. Characterisation of both solid and solution phases was performed using X-ray photoelectron spectroscopy (XPS), focused ion beam (FIB) imaging, X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES).  相似文献   
476.
Ectomycorrhiza-forming fungi (EMF) alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in mineral weathering and the partitioning of products of weathering in soils under nutrient-limited conditions. In this study, we isolated the weathering function of Suillus tomentosus in liquid-cultures with biotite micas incubated at room temperature. We hypothesized that the fungus would accelerate weathering by hyphal attachment to biotite surfaces and transmission of nutrient cations via direct exchange into the fungal biomass. We combined a mass-balance approach with scanning electron microscopy (SEM) and atomic force microscopy (AFM) to estimate weathering rates and study dissolution features on biotite surfaces. Weathering of biotite flakes was about 2-3 orders of magnitude faster in shaken liquid-cultures with fungus compared to shaken controls without fungus, but with added inorganic acids. Adding fungus in nonshaken cultures caused a higher dissolution rate than in inorganic pH controls without fungus, but it was not significantly faster than organic pH controls without fungus. The K+, Mg2+ and Fe2+ from biotite were preferentially partitioned into fungal biomass in the shaken cultures, while in the nonshaken cultures, K+ and Mg2+ was lost from biomass and Fe2+ bioaccumulated much less. Fungal hyphae attached to biotite surfaces, but no significant surface changes were detected by SEM. When cultures were shaken, the AFM images of basal planes appeared to be rougher and had abundant dissolution channels, but such channel development was minor in nonshaken conditions. Even under shaken conditions the channels only accounted for only 1/100 of the total dissolution rate of 2.7 × 10−10 mol of biotite m−2 s−1. The results suggest that fungal weathering predominantly occurred not by attachment and direct transfer of nutrients via hyphae, but because of the acidification of the bulk liquid by organic acids, fungal respiration (CO2), and complexation of cations which accelerated dissolution of biotite. Results further suggest that both carbohydrate source (abundant here) and a host with which nutrients are exchanged (missing here) may be required for EMF to exert an important weathering effect in soils. Unsaturated conditions and physical dispersal of nutrient-rich minerals in soils may also confer a benefit for hyphal growth and attachment, and promote the attachment-mediated weathering which has been observed elsewhere on soil mineral surfaces.  相似文献   
477.
Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment.  相似文献   
478.
We report experimentally determined 1 atm olivine/melt DNa partitioning data for low fO2, a variety of melt compositions and a temperature range of 1325-1522 °C. We demonstrated that high-current electron microprobe analyses (EPMA, I = 500 nA, 600 s on the peak) allow quantitative determination of Na2O in olivine down to ∼10 μg/g. The mean olivine/melt DNa from 12 experimental runs is 0.0031 ± 0.0007 (1σ). This is the recommended value for low pressures and a wide range of natural compositions.This result is applied to the problem of the origin of alkalis in chondrules and the formation of chondritic refractory forsterite grains. The data on Semarkona (LL3.0) chondrules show that Na2O is primordial and was present during olivine crystallization. For refractory forsterite grains from Murchison (CM2), we demonstrate that high CaO contents are not a result of equilibration with Na2O-rich melts, but require high activities of CaO during their formation.  相似文献   
479.
A quantitative model of recent laboratory experiments on carbon isotope fractionation by methane-oxidizing bacteria is proposed. The simulated experimental apparatus consists of a bacterial culture with a constant liquid volume, a gas headspace and a methane bubbling mechanism. The relative effects of bacterial growth and transport phenomena that do not depend on cell density are clarified. In all calculations, gas-liquid mass transfer is defined by unconstrained model parameters. Limited mass transfer from the culture into the headspace, rather than the incomplete dissolution of substrate-rich bubbles, seems to have caused an apparent decrease in the measured carbon isotope fractionation. The experimenters attributed this fractionation shift to a growing imbalance among kinetic rates as methane consumption by bacteria increases. Model predictions support this interpretation but also show that changes in carbon isotope fractionation in the course of the experiments cannot be unambiguously correlated with bacterial cell density unless gas-liquid mass transfer parameters are calibrated. Simulations of other laboratory experiments indicate that a reported change in carbon isotope fractionation could, in part at least, be the result of experimental conditions rather than the emergence of a different methane oxidation pathway postulated by the experimenters. A careful evaluation of mass transfer from the liquid culture into the gas headspace is warranted in this type of experiments since isotope fractionation factors are likely to be used in a wide variety of environmental contexts.  相似文献   
480.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号