首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1179篇
  免费   97篇
  国内免费   18篇
测绘学   24篇
大气科学   105篇
地球物理   343篇
地质学   456篇
海洋学   78篇
天文学   204篇
综合类   10篇
自然地理   74篇
  2023年   4篇
  2022年   13篇
  2021年   17篇
  2020年   38篇
  2019年   37篇
  2018年   56篇
  2017年   83篇
  2016年   71篇
  2015年   57篇
  2014年   59篇
  2013年   83篇
  2012年   60篇
  2011年   82篇
  2010年   75篇
  2009年   63篇
  2008年   72篇
  2007年   56篇
  2006年   54篇
  2005年   48篇
  2004年   42篇
  2003年   47篇
  2002年   29篇
  2001年   18篇
  2000年   15篇
  1999年   16篇
  1998年   10篇
  1997年   7篇
  1996年   10篇
  1995年   7篇
  1994年   3篇
  1993年   9篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
  1948年   1篇
排序方式: 共有1294条查询结果,搜索用时 31 毫秒
101.
Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs.  相似文献   
102.
The water quality of urban drainage ditches in lowlands in the Rhine‐Meuse delta was analysed with principal component analysis (PCA) during a dry period and a rain storm, and related to the seepage of polluted river water and effective impervious area (EIA). This was done in order to test the hypothesis that seepage of river water and storm water runoff from impervious areas strongly determine the water quality of urban drainage systems along large lowland rivers. Our analysis revealed that upward seepage of groundwater originating from rivers Rhine and Meuse was positively correlated with nitrate, potassium, sodium and chloride and negatively correlated with alkalinity, calcium, magnesium and iron. EIA was correlated with very few environmental variables (i.e. phosphate, pH and iron in the dry period and iron during the rain storm). Nickel and zinc concentrations generally exceeded the maximum allowable concentrations (MAC), while lead and phosphorus concentrations were just above the nutrient standards and MAC in a few locations during the rain storm. To optimize water quality in urban water systems, attention should be paid to all sources of pollution and not only to EIA. The impact of local groundwater seepage originating from large rivers in lowlands on the chemistry of urban water systems is often underestimated and should be taken into account when assessing water quality and improving water quality status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
103.
Meteorite impacts on Earth and Mars can generate hydrothermal systems that alter the primary mineralogies of rocks and provide suitable environments for microbial colonization. We investigate a calcite–marcasite‐bearing vug at the ~23 km diameter Haughton impact structure, Devon Island, Nunavut, Canada, using imaging spectroscopy of the outcrop in the field (0.65–1.1 μm) and samples in the laboratory (0.4–2.5 μm), point spectroscopy (0.35–2.5 μm), major element chemistry, and X‐ray diffraction analyses. The mineral assemblages mapped at the outcrop include marcasite; marcasite with minor gypsum and jarosite; fibroferrite and copiapite with minor gypsum and melanterite; gypsum, Fe3+ oxides, and jarosite; and calcite, gypsum, clay, microcline, and quartz. Hyperspectral mapping of alteration phases shows spatial patterns that illuminate changes in alteration conditions and formation of specific mineral phases. Marcasite formed from the postimpact hydrothermal system under reducing conditions, while subsequent weathering oxidized the marcasite at low temperatures and water/rock ratios. The acidic fluids resulting from the oxidation collected on flat‐lying portions of the outcrop, precipitating fibroferrite + copiapite. That assemblage then likely dissolved, and the changing chemistry and pH resulting from interaction with the calcite‐rich host rock formed gypsum‐bearing red coatings. These results have implications for understanding water–rock interactions and habitabilities at this site and on Mars.  相似文献   
104.
105.
106.
Abstract

In a sensitivity study, the influence of an observed stratospheric zonal ozone anomaly on the atmospheric circulation was investigated using the Fifth Generation European Centre Hamburg Model (ECHAM5) which is a general circulation model. The model was run from 1960 to 1999 (40 years) with a mean seasonal cycle of zonally symmetric ozone. In order to isolate the induced dynamical influence of the observed zonally asymmetric part of the three-dimensional stratospheric ozone, a second run was performed for the boreal extratropics using prescribed monthly means from the 40-year reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ERA-40). The main findings are the interdecadal westward shift of the polar vortex at about 65°N and a significant increase in the number of stratospheric sudden warmings during the 1980–99 period. Under the action of zonally asymmetric ozone a decrease in the Arctic Oscillation was identified between the mid-1980s and the mid-1990s. The lag correlation between the mean Arctic Oscillation at the surface and the daily stratospheric northern annular mode increased in mid-winter. Furthermore, we examined the influence of the stratospheric zonal ozone anomaly on Rossby wave breaking in the upper troposphere and found a significant westward shift of poleward Rossby wave breaking events over western Europe in the winter. By this we show that the stratospheric zonal ozone anomaly has a strong influence on the tropospheric circulation as a result of enhanced dynamical coupling processes.  相似文献   
107.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   
108.
A visual basic spreadsheet macro for geochemical background analysis   总被引:3,自引:0,他引:3  
Nakić Z  Posavec K  Bacani A 《Ground water》2007,45(5):642-647
A Visual Basic macro entitled BACKGROUND calculates geochemical background values of chemical parameters and estimates threshold values separating background data from anomalies. The macro uses two statistical methods, the iterative 2-sigma technique and the calculated distribution function, and integrates these model-based objective methods into a widely accessible platform (i.e., MS Excel). The macro offers the possibility for automated processing of geochemical data and enables an automated generation of background range and threshold values for chemical parameters.  相似文献   
109.
The geochemical partitioning of bromine between hydrous haplogranitic melts, initially enriched with respect to Br and aqueous fluids, has been continuously monitored in situ during decompression. Experiments were carried out in diamond anvil cells from 890 °C to room temperature and from 1.7 GPa to room pressure, typically from high P, T conditions corresponding to total miscibility (presence of a supercritical fluid). Br contents were measured in aqueous fluids, hydrous melts and supercritical fluids. Partition coefficients of bromine were characterized at pressure and temperature between fluids, hydrous melts and/or glasses, as appropriate: DBrfluid/melt = (Br)fluid/(Br)melt, ranges from 2.18 to 9.2 ± 0.5 for conditions within the ranges 0.66-1.7 GPa, 590-890 °C; and DBrfluid/glass = (Br)fluid/(Br)glass ranges from 60 to 375 at room conditions. The results suggest that because high pressure melts and fluids are capable of accepting high concentrations of bromine, this element may be efficiently removed from the slab to the mantle source of arc magmas. We show that Br may be highly concentrated in subduction zone magmas and strongly enriched in subduction-related volcanic gases, because its mobility is strongly correlated with that of water during magma degassing. Furthermore, our experimental results suggest that a non negligible part of Br present in the subducted slab may remain in the down-going slab, being transported toward the transition zone. This indicates that the Br cycle in subduction zones is in fact divided in two related but independent parts: (1) a shallower one where recycled Br may leave the slab with a water and silica-bearing “fluid” leading to enriched arc magmas that return Br to the atmosphere. (2) A deeper cycle where Br may be recycled back to the mantle maybe to the transition zone, where it may be present in high pressure water-rich metasomatic fluids.  相似文献   
110.
Micro-Raman spectroscopy, even though a very promising technique, is not still routinely applied to analyse H2O in silicate glasses. The accuracy of Raman water determinations critically depends on the capability to predict and take into account both the matrix effects (bulk glass composition) and the analytical conditions on band intensities. On the other hand, micro-Fourier transform infrared spectroscopy is commonly used to measure the hydrous absorbing species (e.g., hydroxyl OH and molecular H2O) in natural glasses, but requires critical assumptions for the study of crystal-hosted glasses. Here, we quantify for the first time the matrix effect of Raman external calibration procedures for the quantification of the total H2O content (H2OT = OH + H2Om) in natural silicate glasses. The procedures are based on the calibration of either the absolute (external calibration) or scaled (parameterisation) intensity of the 3550 cm−1 band. A total of 67 mafic (basanite, basalt) and intermediate (andesite) glasses hosted in olivines, having between 0.2 and 4.8 wt% of H2O, was analysed. Our new dataset demonstrates, for given water content, the height (intensity) of Raman H2OT band depends on glass density, reflectance and water environment. Hence this matrix effect must be considered in the quantification of H2O by Raman spectroscopy irrespective of the procedure, whereas the parameterisation mainly helps to predict and verify the self-consistency of the Raman results. In addition, to validate the capability of the micro-Raman to accurately determine the H2O content of multicomponent aluminosilicate glasses, a subset of 23 glasses was analysed by both micro-Raman and micro-FTIR spectroscopy using the band at 3550 cm−1. We provide new FTIR absorptivity coefficients (ε3550) for basalt (62.80 ± 0.8 L mol−1 cm−1) and basanite (43.96 ± 0.6 L mol−1 cm−1). These values, together with an exhaustive review of literature data, confirm the non-linear decline of the FTIR absorptivity coefficient (ε3550) as the glass depolymerisation increases. We demonstrate the good agreement between micro-FTIR and micro-Raman determination of H2O in silicate glasses when the matrix effects are properly considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号