首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   965篇
  免费   21篇
  国内免费   1篇
测绘学   17篇
大气科学   78篇
地球物理   246篇
地质学   275篇
海洋学   96篇
天文学   135篇
综合类   3篇
自然地理   137篇
  2020年   9篇
  2019年   9篇
  2018年   27篇
  2017年   15篇
  2016年   19篇
  2015年   16篇
  2014年   21篇
  2013年   41篇
  2012年   38篇
  2011年   46篇
  2010年   33篇
  2009年   32篇
  2008年   41篇
  2007年   35篇
  2006年   34篇
  2005年   34篇
  2004年   24篇
  2003年   25篇
  2002年   34篇
  2001年   19篇
  2000年   20篇
  1999年   14篇
  1998年   19篇
  1997年   16篇
  1996年   9篇
  1995年   16篇
  1994年   11篇
  1993年   18篇
  1992年   11篇
  1991年   5篇
  1990年   13篇
  1989年   9篇
  1988年   10篇
  1987年   12篇
  1986年   18篇
  1985年   19篇
  1984年   17篇
  1983年   23篇
  1982年   18篇
  1981年   8篇
  1980年   19篇
  1979年   15篇
  1978年   20篇
  1977年   12篇
  1976年   16篇
  1975年   7篇
  1974年   11篇
  1973年   12篇
  1972年   5篇
  1971年   5篇
排序方式: 共有987条查询结果,搜索用时 31 毫秒
21.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   
22.
Sediments are the ultimate sink for contaminants in the marine environment, and physical processes of sedimentation influence the distribution and accumulation of these contaminants. Evaluation of contaminant levels in sediments is one approach to assessing environmental impact; data interpretation depends on consideration of sediment texture and mineralogy, however, which profoundly influence chemical composition. In this study, comparison of potentially contaminated sediments from the production field with control populations was done only within the context of similar (as to texture and organic carbon and carbonate content) sample groups as determined by cluster analysis. Ba, Cd, and Sr are identified as contaminants. Supported by the identification of a well-crystallized expandable clay—possibly bentonite—drilling fluids are a potential source of Ba. Ba and Sr may be unnaturally high because of their abundance in discharged produced formation waters, but may also be naturally controlled by the unique faunal assemblage associated with the structures. Cd is probably derived from corrosion of the structures and assorted debris on the seafloor. In general, contamination is limited to an area within 100 m of the platforms. Furthermore, substantial erosion around platforms has probably effectively removed and dispersed the bulk of the contaminants introduced into the marine environment by the offshore exploration/production operations.  相似文献   
23.
We present an interior model of Saturn with an ice-rock core,a metallic region,an outer molecular envelope and a thin transition layer between the metallic and molecular regions.The shape of Saturn’s 1 bar surface is irregular and determined fully self-consistently by the required equilibrium condition.While the ice-rock core is assumed to have a uniform density,three different equations of state are adopted for the metallic,molecular and transition regions.The Saturnian model is constrained by its known mass,its known equatorial and polar radii,and its known zonal gravitational coefficients,J_(2n),n=1,2,3.The model produces an ice-rock core with equatorial radius 0.203 R_S,where R_S is the equatorial radius of Saturn at the 1-bar pressure surface;the core densityρ_c=10388.1 kgm~(3)corresponding to 13.06 Earth masses;and an analytical expression describing the Saturnian irregular shape of the 1-bar pressure level.The model also predicts the values of the higher-order gravitational coefficients,J_8,J_10 and J_12,for the hydrostatic Saturn and suggests that Saturn’s convective dynamo operates in the metallic region approximately defined by 0.2 R_Sre0.7 R_S,where r_e denotes the equatorial radial distance from the Saturnian center of figure.  相似文献   
24.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   
25.
26.
Techniques from dynamical systems theory have been applied to the construction of transfers between unstable periodic orbits that have different energies. Invariant manifolds, trajectories that asymptotically depart or approach unstable periodic orbits, are used to connect the initial and final orbits. The transfer asymptotically departs the initial orbit on a trajectory contained within the initial orbit’s unstable manifold and later asymptotically approaches the final orbit on a trajectory contained within the stable manifold of the final orbit. The manifold trajectories are connected by the execution of impulsive maneuvers. Two-body parameters dictate the selection of the individual manifold trajectories used to construct efficient transfers. A bounding sphere centered on the secondary, with a radius less than the sphere of influence of the secondary, is used to study the manifold trajectories. A two-body parameter, κ, is computed within the bounding sphere, where the gravitational effects of the secondary dominate. The parameter κ is defined as the sum of two quantities: the difference in the normalized angular momentum vectors and eccentricity vectors between a point on the unstable manifold and a point on the stable manifold. It is numerically demonstrated that as the κ parameter decreases, the total cost to complete the transfer decreases. Preliminary results indicate that this method of constructing transfers produces a significant cost savings over methods that do not employ the use of invariant manifolds.  相似文献   
27.
Disk-integrated and disk-resolved measurements of Mercury’s surface obtained by both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft were analyzed and compared with previous ground-based observations of Mercury at 11 wavelengths. The spectra show no definitive absorption features and display a red spectral slope (increasing reflectance with increasing wavelength) typical of space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening, which is not observed in the MASCS spectra. The MDIS spectra are commensurate with ground-based observations to within 10%, whereas the MASCS spectra display greater discrepancies with ground-based observations at near-infrared wavelengths. The derived photometric calibrations provide corrections within 10% for observations taken at phase angles less than ∼100°. The derived photometric properties are indicative of a more compact regolith than that of the lunar surface or of average S-type asteroids. The photometric roughness of the surface is also much smoother than the Moon’s. The calculated geometric albedo (reflectance at zero phase) is higher than lunar values. The lower reflectance of immature units on Mercury compared with immature units on the Moon, in conjunction with the higher geometric albedo, is indicative of more complicated grain structures within Mercury’s regolith.  相似文献   
28.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   
29.
30.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号