首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   42篇
  国内免费   7篇
测绘学   16篇
大气科学   84篇
地球物理   216篇
地质学   282篇
海洋学   125篇
天文学   69篇
综合类   4篇
自然地理   52篇
  2023年   2篇
  2022年   7篇
  2021年   21篇
  2020年   22篇
  2019年   21篇
  2018年   35篇
  2017年   40篇
  2016年   52篇
  2015年   36篇
  2014年   49篇
  2013年   48篇
  2012年   39篇
  2011年   76篇
  2010年   55篇
  2009年   55篇
  2008年   49篇
  2007年   37篇
  2006年   27篇
  2005年   24篇
  2004年   30篇
  2003年   18篇
  2002年   17篇
  2001年   11篇
  2000年   11篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有848条查询结果,搜索用时 15 毫秒
191.
Stratigraphic, granulometric, and SEM grain texture studies have been carried out on pyroclastic deposits in the Biancavilla and Montalto areas on the lower SW flank of Etna. These studies support the interpretation that the deposits were emplaced as pyroclastic flows during the final stage of the Ellittico eruptive activity (14.18±26 ka). Based on the high percentage of juvenile components and granulometric characteristics, the deposits are classified as normal ignimbrite. Four separate flow units have been distinguished based on the presence of fine-grained basal layers. A multivariate G-mode statistical analysis has been used to discriminate particle morphology populations between flow units and infer temporal changes in the nature of the eruptive processes. The initial flow (I) was emplaced at a high temperature and involved a juvenile gas phase exolved from the magma. Subsequent flows (II, III, IV) exhibit evidence for the interaction of external water.  相似文献   
192.
The microstructure of orographic clouds related to the aerosol present was studied during the second Aerosol Characterisation Experiment (ACE‐2). Very high cloud droplet number concentrations (almost 3000 cm−3) were observed. These high concentrations occurred when clouds formed on a hill slope at Tenerife in polluted air masses originating in Europe that had transported the order of 1000 km over the Atlantic Ocean. The validity of the measured droplet number concentrations was investigated by comparing with measurements of the aerosol upstream of the cloud and cloud interstitial aerosol. Guided by distributions of the ratios between the measurements, three criteria of typically 30% in maximum deviation were applied to the measurements to test their validity. Agreement was found for 88% of the cases. The validated data set spans droplet number concentrations of 150–3000 cm−3. The updraught velocity during the cloud formation was estimated to 2.2 m s−1 by model calculations, which is typical of cumuliform clouds. The results of the present study are discussed in relation to cloud droplet number concentrations previously reported in the literature. The importance of promoting the mechanistic understanding of the aerosol/cloud interaction and the use of validation procedures of cloud microphysical parameters is stressed in relation to the assessment of the indirect climatic effect of aerosols.  相似文献   
193.
The Gossendorf volcanic body is the only one in the Styrian basin that shows extensive hydrothermal alteration. K‐Ar dating of primary volcanic biotite and alteration products (alunite) suggests that the emplacement of the volcanic body and hydrothermal alteration took place synchronously, 15 Ma ago. The stable isotope compositions of the alteration products such as opal, barite, pyrite and alunite combined with crystallographia investigations indicate temperatures between 150 and 200 °C for the formation of the alteration zones. The calculated stable isotopic compositions of the parent fluid, responsible for the alteration, show an exogene marine component, which interacted with the host rock. Sulphur isotopic compositions of sulphur, sulphides and sulphates indicate disequilibrium, and progressive oxidation. This fact, combined with the mineral zonation of the alteration zone, reflects not only change in the pH but also change in the fO2 of the ascending fluids.  相似文献   
194.
No-till (NT) is a conservation system that improves the hydrological regime of agricultural slopes by providing greater surface protection and benefits to the physical and hydrological properties of soils. However, the isolated use of NT is not enough to control runoff and its associated degradation processes. Therefore, this study aimed to evaluate the runoff of agricultural slopes under NT under different runoff control conditions by monitoring 63 rainfall events in two 2.4-ha zero-order catchments and 27 rainfall events in four 0.6-ha macroplots. The catchments are paired and similar in terms of the type of soil and relief, but different regarding the presence of terraces. The macroplots have different soil and crop management systems. By using monitoring techniques, the hyetographs and hydrographs revealed the influence of the different types of management on the catchments and macroplots and allowed rainfall characteristics, runoff volume, runoff coefficients, water infiltration, peak runoff, response times, and curve number to be analysed. The terraces positively affected the NT and controlled runoff and related variables, in addition to infiltration significantly increasing and runoff reducing in the terraced catchment. All the hydrological information assessed pointed to the positive effects provided by the presence of the terraces. The results in the macroplots showed that high amounts of phytomass and/or chiselling do not control runoff and its correlated variables in medium and high magnitude events. The study concludes by underlining the need for additional measures to control runoff (terraces), even in areas under NT and with high phytomass production. Additionally, the study emphasizes the importance of monitoring at the catchment scale to better understand the hydrological behaviour of agricultural areas and provide the necessary parameters to effectively control runoff.  相似文献   
195.
196.
The study of the environmental factors that control evapotranspiration and the components of evapotranspiration leads to a better understanding of the actual evapotranspiration (ET) process that links the functioning of the soil, water and atmosphere. It also improves local, regional and global ET modelling. Globally, few studies so far focussed on the controls and components of ET in alpine grasslands, especially in mountainous sites such as the tussock grasslands located in the páramo biome (above 3300 m a.s.l.). The páramo occupies 35 000 km2 and provides water resources for many cities in the Andes. In this article, we unveiled the controls on ET and provided the first insights on the contribution of transpiration to ET. We found that the wet páramo is an energy-limited region and net radiation (Rn) is primarily controlling ET. ET was on average 1.7 mm/day. The monthly average evaporative fraction (ET/Rn) was 0.47 and it remained similar for wet and dry periods. The secondary controls on ET were wind speed, aerodynamic resistance and surface resistance that appeared more important for dry periods, where significantly higher ET rates were found (20% increase). During dry events, transpiration was on average 1.5 mm/day (range 0.7–2.7 mm/day), similar to other tussock grasslands in New Zealand (range 0.6–3.3 mm/day). Evidence showed interception contributes more to ET than transpiration. This study sets a precedent towards a better understanding of the evapotranspiration process and will ultimately lead to a better land-atmosphere fluxes modelling in the tropics.  相似文献   
197.
198.
199.
Natural Hazards - We present a Risk Atlas of Mexico City based on a Geographical Information System (RA-GIS). We identified the prevalent social risk to the more relevant hazards in Mexico City...  相似文献   
200.
Three Holocene tufas from Gran Canaria volcanic island were studied with the aim of deciphering their sedimentary evolution through space and time. Las Temisas tufa (south-eastern arid part of the island) is dominantly composed of oncoids, intraclasts, phytoclasts, coated stems, minor thin stromatolites, and a high amount of siliciclastics. It was deposited in a fluvial system with variable flow velocities and palustrine conditions areas, which alternated with high energy events. Azuaje tufa (northern humid part of the island) is composed of coated stems, stromatolites, oncoids and phytoclasts, with relatively low amounts of siliciclastics, suggesting slow-flowing and palustrine conditions and a relatively low incidence of (high energy) floodings. Los Berrazales tufa (north-west of Gran Ganaria, the most humid one), is mainly composed of coated stems and crystalline crusts, formed in a laminar flow regime. Dominant clastic sedimentation in Las Temisas and high calcite growth rates in Los Berrazales led to a poor development of stromatolites in comparison with Azuaje. Las Temisas and Azuaje deposits have similar upward evolution with decreasing trend in siliciclastics and increasing trend in carbonates. However, Las Temisas has higher siliciclastic and lower phytoclastic contents suggesting a less vegetated area and more arid climate than in the other deposits. Additionally, tufas record local events common in volcanic terrains. Azuaje presents three units bounded by erosive discontinuities, which reveal significant erosion by enhanced runoff that could be caused by loss of vegetation due to wildfires related to volcanic eruptions at headwaters. Las Temisas record a possible interruption in sedimentation represented by aligned boulders due to rockfalls from the hillsides. These deposits formed from waters with similar chemistry providing to the carbonates their similar signals in δ13C–δ18O stable isotopes and 87Sr/86Sr ratios like that of the volcanic rocks. This work shows how, in volcanic areas, tufas are unique archives of the climate, vegetation and volcanic-related processes, because all imprint the sedimentary regime of tufa deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号