首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   32篇
  国内免费   3篇
测绘学   15篇
大气科学   63篇
地球物理   168篇
地质学   233篇
海洋学   111篇
天文学   55篇
综合类   4篇
自然地理   44篇
  2023年   2篇
  2022年   6篇
  2021年   16篇
  2020年   16篇
  2019年   19篇
  2018年   31篇
  2017年   33篇
  2016年   44篇
  2015年   30篇
  2014年   42篇
  2013年   42篇
  2012年   30篇
  2011年   64篇
  2010年   44篇
  2009年   46篇
  2008年   46篇
  2007年   32篇
  2006年   22篇
  2005年   19篇
  2004年   24篇
  2003年   11篇
  2002年   13篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有693条查询结果,搜索用时 15 毫秒
121.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
122.
Exceptional rainfall events cause significant losses of soil, although few studies have addressed the validation of model predictions at field scale during severe erosive episodes. In this study, we evaluate the predictive ability of the enhanced Soil Erosion and Redistribution Tool (SERT‐2014) model for mapping and quantifying soil erosion during the exceptional rainfall event (~235 mm) that affected the Central Spanish Pyrenees in October 2012. The capacity of the simulation model is evaluated in a fallow cereal field (1.9 ha) at a high spatial scale (1 × 1 m). Validation was performed with field‐quantified rates of soil loss in the rills and ephemeral gullies and also with a detailed map of soil redistribution. The SERT‐2014 model was run for the six rainfall sub‐events that made up the exceptional event, simulating the different hydrological responses of soils with maximum runoff depths ranging between 40 and 1017 mm. Predicted average and maximum soil erosion was 11 and 117 Mg ha?1 event?1, respectively. Total soil loss and sediment yield to the La Reina gully amounted to 16.3 and 9.0 Mg event?1. These rates are in agreement with field estimations of soil loss of 20.0 Mg event?1. Most soil loss (86%) occurred during the first sub‐event. Although soil accumulation was overestimated in the first sub‐event because of the large amount of detached soil, the enhanced SERT‐2014 model successfully predicted the different spatial patterns and values of soil redistribution for each sub‐event. Further research should focus on stream transport capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
123.
For the 1993–2009 period, we analyzed the relationship between almond yield and three climatic variables (mean annual temperature, soil water reserve, and precipitation), and four bioclimatic variables (annual ombrothermic index, water deficit, simple continentality index, and compensated thermicity index), for one major Hebron crop (soft and hard almonds). Moreover, we obtained data almond production from the Palestinian Central Bureau of Statistics, while the climate data from the Palestinian meteorological station during the study period from 1993 to 2009, and analysis is it by using bioclimatic classification of the Earth of Salvador Rivas-Martinez to study the relationship between the almond yield and climate and bioclimate factors (variables). The climatic and bioclimate variables of greatest importance to almond were used to develop regressions analysis relating yield to climatic conditions. Hebron was positively affected by annual ombrothermic index, simple continentality index, precipitation, water soil reserve, and mean annual temperature, but negatively affected by water deficit, with a large proportion of the variance explained by axis F1 (72.48%), F2 (22.38%), and axes F1and F2 (94. 86%). However, in order to produce a high amount of almonds and quality, it can be grown in the regions of the mesomediterranean region, with the value of annual ombrothemic index more than 3, compensated thermicity index between 220/220 to 350/350, simple continentality index between 14 and 20, and in areas where the average annual temperature is between 15 and 20 °C.  相似文献   
124.
We present a study of two short sediment cores recovered from Lago Enol, in the Picos de Europa National Park, Cantabrian Mountains, northern Iberia. We inferred past climate conditions and anthropogenic impacts using geochemical and biological (pollen and diatoms) variables in the dated sequences, in conjunction with temperature and precipitation data collected since 1871 at meteorological stations in the region. The record provides evidence of environmental changes during the last 200 years. At the end of the Little Ice Age (~1800?C1875 AD) the region was characterized by an open landscape. Long-term use of the area for mixed livestock grazing in the mountains, and cultivation of rye during the nineteenth century, contributed to the expansion of grassland at the expense of forest. Warmer temperatures since the end of the nineteenth century are inferred from a change in diatom assemblages and development of the local forest. Socioeconomic transformation during the twentieth century, such as livestock changes related to dairy specialization, planting of non-native trees, mining activities, and management of the national park since its creation in 1918, caused profound changes in the catchment and in the lake ecology. The last several decades (~1970?C2007 AD) of the Lago Enol sediment record are strikingly different from previous periods, indicating lower runoff and increasing lake productivity, particularly since AD 2000. Today, the large number of tourists who visit the area cause substantial impacts on this ecosystem.  相似文献   
125.
Paleoecology of Laguna Babícora, Chihuahua, Mexico was reconstructed using ostracode faunal assemblages and shell chemistry. The paleolimnological record is used to show the magnitude of paleoclimatic changes in the area from 25,000 years to the present.Faunal assemblages consist of four species of the genus Limnocythere: L. sappaensis, L. ceriotuberosa, L. bradburyi and L. platyforma, all associated with Candona caudata, Candona patzcuaro and Cypridopsis vidua. A paleosalinity index developed from these assemblages indicates that the lake's salinity fluctuated frequently from oligo- to meso-haline conditions during the last 25,000 years. This pattern and low salinity range are in good agreement with modern TDS (here used as an indicator of salinity) values recorded from 26 wells and one spring from the area (258–975 mg l–1). To estimate paleotemperature we examined the trace element content (Mg/Ca ratios) from individual valves of L. ceriotuberosa and L. platyforma, the two species most commonly recorded in Laguna Babícora.Shell Mg/Ca ratios of 204 specimens of these two species were used to estimate water temperature (Mg/Ca) by means of experimental standard coefficients. Our data show that paleowater temperature ranged from 5.6–21.3 °C (with 2 values ranging from 0.2–4.8 °C), which suggest a close correlation with atmospheric temperatures around the lake. These results are in good agreement with a modern mean winter temperature (3.5 °C) and mean summer temperature (20 °C) recorded in the area between 1970 and 1980.  相似文献   
126.
From 2002 through 2004, time-series sediment trap samples were collected from a depth of 410 m in Cuenca Alfonso, Bahía de La Paz, on the SW coast of the Gulf of California. The instrument recorded the impact of the local passage of hurricanes “Ignacio” (24–26 August) and “Marty” (21–23 September) in 2003. These two events accounted for 82% of the total rainfall measured in 2003, equivalent to the annual average precipitation in years without hurricanes. Mean total mass fluxes (TMFs) of 2.88 and 3.58 g m−2 d−1 were measured during the week of each hurricane as well as the following week. This may have been enough to produce a lamina in the underlying sediment with characteristics peculiar to such events. The terrigenous component was particularly abundant, with notably higher concentrations of Fe, Sc, Co and Cs and REEs. In contrast, TMFs throughout 2002–2004 (excluding the hurricane periods) averaged only 0.73 g m−2 d−1 and had a larger marine biogenic component. The extraordinary elemental fluxes during the 29 days of hurricane-influenced sedimentation represented a great proportion of the totals over an entire “normal” year: Co (67.8%) >Sc (62.6) >Fe (59.6) >Cs (53.4)>Lu (51.5)>La (51.3)>Yb (51.0)>Ce (49.5) >Tb (48.4) >Sm (44.7)>Cr (36.5) >Ca (31.0)>Eu (25.4%). The terrigenous fraction was calculated using (a) TMF minus the sum of CaCO3, biogenic silica and organic matter and (b) the ratio of Sc in the trap samples to the average in the Earth's crust. The latter was consistently smaller, but the two methods offered similar results following hurricanes (78% vs. 63%, respectively). For normal sedimentation, however, the difference method yielded values twice as large as the Sc method (58% vs. 30%) This suggests that the mineralogy of the terrigenous fraction may also vary, with unsorted dessert soil being carried to sea by the powerful flash floods associated with hurricanes. Eolian supply of particles, particularly Sc-free quartz grains, possibly from beyond the limited fluvial drainage basin, apparently dominates normal sedimentation.  相似文献   
127.
Regional climate model (RCM) outputs are often used in hydrological modeling, in particular for streamflow forecasting. The heterogeneity of the meteorological variables such as precipitation, temperature, wind speed and solar radiation often limits the ability of the hydrological model performance. This paper assessed the sensitivity of RCM outputs from the PRUDENCE project and their performance in reproducing the streamflow. The soil and water assessment tool was used to simulate the streamflow of the Rhone River watershed located in the southwestern part of Switzerland, with the climate variables obtained from four RCMs. We analyzed the difference in magnitude of precipitation, maximum and minimum air temperature, and wind speed with respect to the observed values from the meteorological stations. In addition, we also focused on the impact of the grid resolution on model performance, by analyzing grids with resolutions of 50 × 50 and 25 × 25 km2. The variability of the meteorological inputs from various RCMs is quite severe in the studied watershed. Among the four different RCMs, the Danish Meteorological Institute provided the best performance when simulating runoff. We found that temperature lapse rate is significantly important in the mountainous snow and glacier dominated watershed as compared to other variables like precipitation, and wind speed for hydrological performance. Therefore, emphasis should be given to minimum and maximum temperature in the bias correction studies for downscaling climatic data for impact modeling in the mountainous snow and glacier dominated complex watersheds.  相似文献   
128.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   
129.
In the summer of 2008 the Prut river recorded a historical flow of 7140 m3/s at its entrance into Romania. This flow was the highest ever recorded of any Romanian river. The high value was generated by high amounts of rainfall recorded first on the territory of Ukraine and then in Romania. Unfortunately, there were some discrepancies between the data transmitted and intercepted from the Meteorology National Agency and Hydrology and Water Management National Agency. This is why the amount of precipitation which fell over the territory of Ukraine could not be monitored in time and punctually. Nor could the high flood wave moving rapidly from the upper basin to the lower basin. The high flow of the upper Prut caused the accumulation of an immense quantity of water in the Stanca–Costesti reservoir. Under the conditions of precipitation occurring in the lower river basin as well, the levels reached the flood quota and the reservoir reached the maximum accepted capacity, with 0·1% insurance. The release of supplementary water quantities from the reservoir would have produced catastrophic floods downstream. Keeping the water in the reservoir could have broken it and the flooding, through backwater eddies, or the riverbank settlements. In such a case, it would have produced the greatest tragedy in the hydrological history of Europe. The most significant damage was produced upstream of the barrage, next to the localities of Radauti Prut and Baranca–Hudesti, as well as in the area of the reservoir, as a result of the phenomenon known as ‘remuu’, or backwater eddies. The floods of the Prut river occurred between the end of July and the end of August. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
130.
Vertical distribution (0–15 cm) of the macrobenthic community and its relationships to natural sediment characteristics and trace metal contents and bioavailability were studied at five locations in the lower Douro estuary, Portugal. An analysis of vertical metal distribution, for the interpretation of anthropogenic impact on the estuarine sediments, was also investigated. Sediment characterisation included organic matter, grain size, metals (Al, Fe, Cu, Pb, Cr, Ni, Cd, Zn and Mn), acid volatile sulphide (AVS) and simultaneously extracted metals (SEM). The macrobenthic community had low diversity (14 species), was dominated by small size opportunists and seemed to be controlled mainly by natural factors such as grain size distribution, Al and Fe contents and sediment depth. The vertically heterogeneous distribution of macrobenthic community appears to affect redox status of the sediments and consequently metal bioavailability. Despite anthropogenic contamination in terms of Zn, Cu, Pb, Cr and Ni having already been detected in the north bank, the analysis of vertical distribution was essential for the identification of current anthropogenic contamination in terms of Zn, Pb and Cd in the south bank.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号