首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   35篇
  国内免费   16篇
测绘学   22篇
大气科学   28篇
地球物理   133篇
地质学   208篇
海洋学   22篇
天文学   35篇
综合类   8篇
自然地理   32篇
  2024年   1篇
  2023年   4篇
  2022年   13篇
  2021年   27篇
  2020年   27篇
  2019年   27篇
  2018年   36篇
  2017年   31篇
  2016年   50篇
  2015年   26篇
  2014年   36篇
  2013年   35篇
  2012年   26篇
  2011年   28篇
  2010年   20篇
  2009年   17篇
  2008年   14篇
  2007年   8篇
  2006年   13篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1974年   2篇
  1971年   1篇
排序方式: 共有488条查询结果,搜索用时 171 毫秒
91.
The Upper Triassic-Middle Jurassic sedimentary succession in the Tabas Basin, with a thickness of about 1600 m, provides a case showing geochemical property changes through the Triassic-Jurassic boundary. The studied section (Kamarmacheh Kuh) is composed of the marine Nayband Formation (Norian-Rhaetian) overlain by siliciclastic sediments of Ab-e-Haji Formation (Lower Jurassic-Aalenian). Detailed geochemical analyses were conducted on selected samples from both formations and the results were used to infer paleo-depositional conditions. Most of the studied samples contain <1 wt% TOC composed mostly of oxidized organic matter with insignificant generative potential. Extract analysis of four representative samples indicate that the rocks also contain minor amounts of preserved algal organic matter along with a secondary contribution of higher plant organic matter from the adjacent watershed. Biomarker analyses show subtle variations in the relative contribution of land plant material that are consistent with the widespread occurrence of coal seams in the upper parts of the Nayband and basal parts of the Ab-e-Haji formations. Although the samples from the Kamarmacheh Kuh Section have low source potential, the extractable hydrocarbons indicate that conditions existed that were conducive to organic matter preservation and that regions of the Tabas Basin with higher primary productivity or lower sedimentation rates may have greater potential.  相似文献   
92.
The aim of this study is to identify geochemical anomalies using power spectrum–area (S–A) method based on the grade values of Cu, Mo and Au in 2709 soil samples collected from Kahang porphyry-type Cu deposit, Central Iran. S–A log–log plots indicated that there are three stages of Cu, Mo and Au enrichment. The third enrichment was considered as the main stage for the presence of Cu, Mo and Au at the concentrations above 416 ppm, 23 ppm and 71 ppb, respectively. Elemental anomalies are positively associated with monzo–granite–diorite and breccias units which are in the central and western parts of the deposit. The anomalies are located within the potassic, phyllic and argillic alteration types and also there is the positive correlation between the anomalies and nearing faults in the studied area. The results obtained via fractal model were interpreted accordingly to incorporate the information for the mineralized areas including detailed geological map, structural analysis and alterations. The results show that S–A multifractal modeling is applicable for anomalies delineation based on soil data.  相似文献   
93.
Spatially enabled bushfire recovery   总被引:1,自引:0,他引:1  
Over the last decade growth in spatial information use for disaster management has been considerable. Maps and spatial data are now recognized as critical elements in each of the four phases of disaster management: mitigation, preparedness, response, and recovery. The use of spatial information to support the phases of mitigation, preparedness and response to bushfires is widely understood. Less attention, however, has been given to the role of spatial information in the recovery. Moreover, the application of the spatially enabled society concept to bushfire recovery has not been explored. This paper explores the role that spatial information plays and could play in the recovery phase of a bushfire disaster. The bushfires in Victoria, Australia that took place during February 2009 are used as the primary case study. It is found that: Spatial information for recovery requires a pre-existing infrastructure; Spatial capacity must be developed across agencies dealing with recovery; Spatially enabled address and parcel information are the key dataset required to support all recovery tasks; Spatial integration of bushfire datasets (spread and intensity) require linking with planning regimes, and Spatial information that is volunteered could be incorporated into recovery activities.  相似文献   
94.
Previous genetic studies showing evidence of past demographic changes in African drosophilids suggested that these populations had strongly responded to Quaternary climate changes. We surveyed nine species of Zaprionus, a drosophilid genus mostly present in Africa, in forests located between southern Senegal and Gabon. The mitochondrial COI gene showed contrasted levels of sequence variation across species. Populations of the only cosmopolitan species of the genus, Z. indianus, and of its closely related sibling species, Z. africanus, are highly polymorphic and appear to have undergone a continuous population expansion beginning about 130,000 years ago. Five less variable species probably underwent a population expansion beginning only about 20,000–30,000 years ago. One of them, Z. taronus, was significantly structured between forest blocks. The last two species were nearly monomorphic, probably due to infection by Wolbachia. These results are similar to those obtained in three species from the melanogaster subgroup, and may be typical of the responses of African drosophilid populations to glacial cycles.  相似文献   
95.
96.
Agriculture sector by using 80% of freshwater is the greatest water consumer in Iran. Excessive use of agricultural fertilizers in last decade, caused accumulation of enormous amounts of salts and subsequence declined the physical properties of soil. In desert and dry regions such as Rafsanjan plain, use of the groundwater resources is more than the surface water resources. Therefore, information about the quality of these resources remains a necessary task for optimum management, protection of water resources, and stopping the future damages. In this study, the groundwater quantity and quality of Rafsanjan plain was investigated by MODFLOW and MT3DMS. The presented quantitative model for this aquifer was compared by observed data and calibrated. This model was used to predict a 10-year period. Results show that water elevation decreases approximately 15 m for 10 years to come in this plain. Qualitative model results show that most quality parameters will increase. Electrical conductivity will increase more than other parameters. As values of this parameter will reach 16,000 µs/l for next 5 years. Therefore, we suggest that exploitation of water from these resources should be reduced and discharge from some of agricultural wells stop; also we suggested that recharge to groundwater resources should be increased and agricultural activities should be limited or improved using of modern irrigation systems in this plain.  相似文献   
97.
Contrast in capillary pressure of heterogeneous permeable media can have a significant effect on the flow path in two-phase immiscible flow. Very little work has appeared on the subject of capillary heterogeneity despite the fact that in certain cases it may be as important as permeability heterogeneity. The discontinuity in saturation as a result of capillary continuity, and in some cases capillary discontinuity may arise from contrast in capillary pressure functions in heterogeneous permeable media leading to complications in numerical modeling. There are also other challenges for accurate numerical modeling due to distorted unstructured grids because of the grid orientation and numerical dispersion effects. Limited attempts have been made in the literature to assess the accuracy of fluid flow modeling in heterogeneous permeable media with capillarity heterogeneity. The basic mixed finite element (MFE) framework is a superior method for accurate flux calculation in heterogeneous media in comparison to the conventional finite difference and finite volume approaches. However, a deficiency in the MFE from the direct use of fractional flow formulation has been recognized lately in application to flow in permeable media with capillary heterogeneity. In this work, we propose a new consistent formulation in 3D in which the total velocity is expressed in terms of the wetting-phase potential gradient and the capillary potential gradient. In our formulation, the coefficient of the wetting potential gradient is in terms of the total mobility which is smoother than the wetting mobility. We combine the MFE and discontinuous Galerkin (DG) methods to solve the pressure equation and the saturation equation, respectively. Our numerical model is verified with 1D analytical solutions in homogeneous and heterogeneous media. We also present 2D examples to demonstrate the significance of capillary heterogeneity in flow, and a 3D example to demonstrate the negligible effect of distorted meshes on the numerical solution in our proposed algorithm.  相似文献   
98.
99.

Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025–2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  相似文献   
100.
It is demonstrated that single titanium dioxide (TiO2) has high potential for photodegradation of pollutants. However, it is still far from becoming an effective photocatalyst system, due to issues of adsorption process, separation, as well as dissolution. Therefore, this study highlights the high adsorption capacity, simplified separation, and the promising stability of TiO2(SY) (synthesized via sol–gel method) photocatalyst, fabricated using chitosan–TiO2(SY) and supported by glass substrate (Cs–TiO2(SY)/glass substrate) photocatalysts. Chitosan (Cs), with abundant –R–NH and NH2 groups, promotes the adsorption sites of methyl orange (MO) and OH groups for major attachment to TiO2(SY). Meanwhile, the glass substrate increases stability and assists separation of the photocatalysts. Initially, nano-TiO2(SY) has been characterized using high-resolution transmission electron microscope. Cs–TiO2(SY)/glass substrate was fabricated via dip-coating. The distribution and interface between the photocatalytic components were characterized by Fourier transform infrared absorption spectroscopy, UV–Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, and energy-dispersive spectrometer. UV–Vis analysis of the multilayer photocatalyst (2, 4, 6, and 8 layers) was further carried out by the adsorption–photodegradation, with MO as model of pollutant. Seventy percent of the total removal of MO via optimized eight layers of photocatalyst was achieved within 1 h of UV irradiation. The adsorption photocatalyst achieved 50 % with no exposure to UV light for 15 min of irradiation. It is concluded that suitable photocatalytic conditions and sample parameters possessing the multilayer photocatalyst of Cs–TiO2(SY) are beneficial toward the adsorption–photodegradation process in wastewater treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号