首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   3篇
测绘学   5篇
大气科学   17篇
地球物理   31篇
地质学   41篇
海洋学   11篇
天文学   90篇
自然地理   8篇
  2020年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   2篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   18篇
  2006年   9篇
  2005年   12篇
  2004年   6篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1976年   2篇
  1974年   1篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有203条查询结果,搜索用时 31 毫秒
41.
A process‐based, spatially distributed hydrological model was developed to quantitatively simulate the energy and mass transfer processes and their interactions within arctic regions (arctic hydrological and thermal model, ARHYTHM). The model first determines the flow direction in each element, the channel drainage network and the drainage area based upon the digital elevation data. Then it simulates various physical processes: including snow ablation, subsurface flow, overland flow and channel flow routing, soil thawing and evapotranspiration. The kinematic wave method is used for conducting overland flow and channel flow routing. The subsurface flow is simulated using the Darcian approach. The energy balance scheme was the primary approach used in energy‐related process simulations (snowmelt and evapotranspiration), although there are options to model snowmelt by the degree‐day method and evapotranspiration by the Priestley–Taylor equation. This hydrological model simulates the dynamic interactions of each of these processes and can predict spatially distributed snowmelt, soil moisture and evapotranspiration over a watershed at each time step as well as discharge in any specified channel(s). The model was applied to Imnavait watershed (about 2·2 km2) and the Upper Kuparuk River basin (about 146 km2) in northern Alaska. Simulated results of spatially distributed soil moisture content, discharge at gauging stations, snowpack ablations curves and other results yield reasonable agreement, both spatially and temporally, with available data sets such as SAR imagery‐generated soil moisture data and field measurements of snowpack ablation, and discharge data at selected points. The initial timing of simulated discharge does not compare well with the measured data during snowmelt periods mainly because the effect of snow damming on runoff was not considered in the model. Results from the application of this model demonstrate that spatially distributed models have the potential for improving our understanding of hydrology for certain settings. Finally, a critical component that led to the performance of this modelling is the coupling of the mass and energy processes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
42.
A method is proposed that uses analysis of borehole stratigraphic logs for the characterization of shallow aquifers and for the assessment of areas suitable for manual drilling. The model is based on available borehole-log parameters: depth to hard rock, depth to water, thickness of laterite and hydraulic transmissivity of the shallow aquifer. The model is applied to a study area in northwestern Senegal. A dataset of boreholes logs has been processed using a software package (TANGAFRIC) developed during the research. After a manual procedure to assign a standard category describing the lithological characteristics, the next step is the automated extraction of different textural parameters and the estimation of hydraulic conductivity using reference values available in the literature. The hydraulic conductivity values estimated from stratigraphic data have been partially validated, by comparing them with measured values from a series of pumping tests carried out in large-diameter wells. The results show that this method is able to produce a reliable interpretation of the shallow hydrogeological context using information generally available in the region. The research contributes to improving the identification of areas where conditions are suitable for manual drilling. This is achieved by applying the described method, based on a structured and semi-quantitative approach, to classify the zones of suitability for given manual drilling techniques using data available in most African countries. Ultimately, this work will support proposed international programs aimed at promoting low-cost water supply in Africa and enhancing access to safe drinking water for the population.  相似文献   
43.
Two scales of levee confinement are commonly recognised from submarine channel-levee systems on the seafloor and in the subsurface. Large-scale external levees bound the entire system whilst smaller-scale internal levees bound individual thalweg channels within the channel-belt. Although thin beds are commonly identified in core and well logs, their origin, and consequently their stratigraphic significance is currently poorly understood. This knowledge gap stems, in part, from the lack of unambiguously identified outcrop analogues of channel-levees, and in particular the lack of identifiable internal and external levees. Here we report from two exhumed channel-levee systems where both scales of confinement can be recognised: the Rosario Fm. of Baja California, and the Fort Brown Fm. of South Africa. A suite of characteristic sedimentary features are recognised from internal and external levees respectively: internal levees are characterised by structures indicative of complexity in the waxing-waning style of overspill, interactions with topography and flow magnitude variability; in contrast, external levees are characterised by structures indicative of simple surge-like waning flows, relatively uniform flow directions, laterally extensive beds, and a lack of erosive events. Using these observations, together with published literature, we propose a simple nomenclatural scheme for levee sub-environments, and criteria to differentiate between levee sub-environments in core or outcrop.  相似文献   
44.
45.
Lesions in estuarine finfish are associated with a variety of organisms including parasites and bacterial, viral, and fungal infectious agents. In addition, trauma, suboptimal water quality, and other abiotic stress factors may result in the loss of homeostasis. We have observed solitary ulcerative lesions on menhaden sampled from the Chesapeake Bay, Maryland, the Pimlico River, North Carolina, and the St. Johns River, Florida. Histologically, the lesions demonstrated a marked chronic inflammatory infiltrate and granulomas in response to fungal hyphae throughout large areas of exposed necrotic muscle. Gram-negative rod-shaped bacteria were also observed in the lesions, a common finding in ulcers of aquatic organisms. Similar observations in menhaden and other species have been described previously in the literature as ulcerative mycosis, mycotic granulomatosis, red spot disease, and epizootic ulcerative syndrome. Despite the many different known causes of fish lesions, the popular press and the scientific literature have recently emphasized Pfiesteria piscicida and other Pfiesteria-like dinoflagellates (and their bioactive compounds) as the primary causative agent for finfish lesions, particularly mycotic granulomatous ulcers in Atlantic menhaden. While some laboratory data suggest that Pfiesteria may play a role in field-observed lesions, much more cause-and-effect evidence is needed to determine the importance of other risk factors, both alone or and in combination with Pfiesteria. In order to better understand the etiology of lesion initiation and progression in estuarine finfish, accurate assessments of environmental conditions collected on appropriate temporal and spatial scales, and fish morphological indicators consistent with gross and histological pathologic terminology, should be used for reporting fish lesion observations and kills. Further, this outlook will help to avoid bias and may foster a broader perspective for examining the health of estuarine systems in general.  相似文献   
46.
The effects of waterborne nitrite (3 mg/l NO2) on channel catfish were studied to evaluate changes in hematological parameters and phase I-II biotransformation in liver slices. Nitrite-exposed fish had significantly higher methemoglobin, blood and liver nitrite, and significantly lower pO2 than control fish. Total phase I-mediated metabolism of 7-ethoxycoumarin (EC) was not altered in nitrite-exposed fish compared with control fish (291 +/- 43 and 312 +/- 20 pmol/mg/h, respectively). However, phase II glucuronosyltransferase-mediated metabolism of 7-hydroxycoumarin (HC), both as a phase I metabolite of EC and as a parent substrate, was elevated in nitrite-exposed fish (204 +/- 17 and 1007 +/- 103 pmol/mg/h, respectively) as compared to control fish (149 +/- 14 and 735 +/- 87 pmol/mg/h) (P < 0.05). Sulfotransferase-mediated metabolism of HC (as a metabolite of EC and as a parent substrate) was not notably altered in nitrite-exposed fish (95 +/- 16 and 617 +/- 33 pmol/mg protein/h, respectively) as compared with control fish (118 +/- 24 and 575 +/- 55 pmol/mg/h, respectively). These studies indicate that in vivo nitrite exposure and associated changes in hematological parameters do not appear to affect hepatic phase I EC biotransformation in channel catfish. However, subtle but significant changes in phase II glucuronidation, but not sulfation activity, were observed. The mechanism of these alterations is unclear. However, the data suggest that environmentally realistic concentrations of nitrite may affect the dynamics of conjugative metabolism in exposed fish.  相似文献   
47.
Our ongoing investigation of how ‘Pillars’ and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh–Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can test these results.  相似文献   
48.
A sample of 54 6.7-GHz methanol maser sources was monitored at HartRAO for 4 years, and 11 12.2-GHz methanol masers for 3 years. The majority of the maser features display a significant degree of variability but with a wide range of timescales and behaviors. Some maser features remained unvarying throughout the monitoring programme, while others showed sporadic flares or sudden drops in flux density. Yet another group show quasi-periodic and periodic variations. In some cases the maser features dropped below the detection limit for a significant length of time before increasing in intensity and reappearing.  相似文献   
49.
A large number of certified and other reference samples are available for use in analytical geochemistry. Certified materials are preferred, but of much more limited availability than other reference samples for most geochemical applications. The availability of rock, sediment, soil, water, and plant reference samples is outlined; ore and mineral separate reference samples are not included in the discussion. The preparation of these materials, including the establishment of certified or recommended concentrations, is then reviewed. It is shown that comparable quality can be achieved for both certified and recommended concentrations, though it has not always been achieved in the past. Finally, the most appropriate ways to use reference samples in quality control and instrumental calibration are discussed.  相似文献   
50.
Maximum Entropy Spectral Analysis and Multiple Regression Analysis of the 200 year series (1781–1980) of the change in L.O.D. (Length of Day) revealed significant peaks atT=21, 32, 50, 63 and possibly 120 years. The periodsT=22 and 44 years seem to be stable over 200 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号