首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   11篇
  国内免费   2篇
测绘学   17篇
大气科学   23篇
地球物理   30篇
地质学   68篇
海洋学   17篇
天文学   25篇
综合类   1篇
自然地理   13篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   7篇
  2019年   6篇
  2018年   12篇
  2017年   6篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   9篇
  2012年   5篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1954年   1篇
  1952年   1篇
  1949年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
181.
We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly-layered Rupes Tenuis unit (Abrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains. The second major episode of activity during the Middle to Late Amazonian (1 Ga) began with a section of dark, sand-rich and light-toned ice-rich irregularly-bedded sequences (Planum Boreum cavi unit, Abbc) along with deposition of evenly-bedded light-toned ice- and moderate-toned dust-rich layers (Planum Boreum 1 unit, Abb1). These units have transgressive and gradational stratigraphic relationships. Materials in Olympia Planum underlying the dunes of Olympia Undae are interpreted to consist mostly of the Planum Boreum cavi unit (Abbc). Planum Boreum materials were then deeply eroded to form spiral troughs, Chasma Boreale, and marginal scarps that define the major aspects of the polar plateau's current regional topography. Locally- to regionally-extensive (though vertically minor) episodes of deposition of evenly-bedded, light- and dark-toned layered materials and subsequent erosion of these materials persisted throughout the Late Amazonian. Sand saltation, including dune migration, is likely to account for much of the erosion of Planum Boreum, particularly at its margin, alluding to the lengthy sedimentological history of the circum-polar dune fields. Such erosion has been controlled largely by topographic effects on wind patterns and the variable resistance to erosion of materials (fresh and altered) and physiographic features. Some present-day dune fields may be hundreds of kilometers removed from possible sources along the margins of Planum Boreum, and dark materials, comprised of sand sheets, extend even farther downwind. These deposits also attest to the lengthy period of erosion following emplacement of the Planum Boreum 1 unit. We find no evidence for extensive glacial flow, topographic relaxation, or basal melting of Planum Boreum materials. However, minor development of normal faults and wrinkle ridges may suggest differential compaction of materials across buried scarps. Timing relations are poorly-defined mostly because resurfacing and other uncertainties prohibit precise determinations of surface impact crater densities. The majority of the stratigraphic record may predate the recent (<20 Ma) part of the orbitally-driven climate record that can be reliably calculated. Given the strong stratigraphic but loose temporal constraints of the north polar geologic record, a comparison of north and south polar stratigraphy permits a speculative scenario in which major Amazonian depositional and erosional episodes driven by global climate activity is plausible.  相似文献   
182.
The plains of Aurorae and Ophir in the equatorial region of Mars display geomorphic evidence indicative of extensive but generally short-lived paleohydrological processes. Elaver Vallis in Aurorae Planum south of Ganges Chasma is an outflow channel system >180 km long, and here inferred to have formed by cataclysmic spillover flooding from a paleolake(s) contained in the Morella crater basin. Ganges Cavus is an enormous 5-km-deep depression of probable collapse origin located in the Morella basin. The fluid responsible for the infilling of the Morella basin likely emerged at least partially through Ganges Cavus or its incipient depression, and it may have been supplied also from small-scale springs in the basin. Similar paleohydrological processes are inferred also in Ophir Planum. It is reasonable to assume that water, sometimes sediment-laden and/or mixed with gases, was the responsible fluid for these phenomena although some of the observed features could be explained by non-aqueous processes such as volcanism. Water emergence may have occurred as consequences of ground ice melting or breaching of cryosphere to release water from the underlying hydrosphere. Dike intrusion is considered to be an important cause of formation for the cavi and smaller depressions in Aurorae and Ophir Plana, explaining also melting of ground ice or breaching of cryosphere. Alternatively, the depressions and crater basins may have been filled by regional groundwater table rising during the period(s) when cryosphere was absent or considerably thin. The large quantities of water necessary for explaining the paleohydrological processes in Aurorae and Ophir Plana could have been derived through crustal migration from the crust of higher plains in western Ophir Planum where water existed in confined aquifers or was produced by melting of ground ice due to magmatic heating or climatic shift, or from a paleolake in Candor Chasma further west.  相似文献   
183.
    
  相似文献   
184.
Spatially coincident land-cover information frequently varies due to technological and political variations. This is especially problematic for time-series analyses. We present an approach using expert expressions of how the semantics of different datasets relate to integrating temporal time series land-cover information where the classification classes have fundamentally changed. We use land-cover mapping in the UK (LCMGB and LCM2000) as example data sets because of the extensive object-based meta-data in the LCM2000. Inconsistencies between the two datasets can arise from random, gross and systematic error and from an actual change in land cover. Locales of possible land-cover change are inferred by comparing characterizations derived from the semantic relations and meta-data. Field visits showed errors of omission to be 21% and errors of commission to be 28%, despite the accuracy limitations of the land-cover information when compared with the field survey component of the Countryside Survey 2000.  相似文献   
185.
Stable carbon, oxygen, and strontium isotope records were obtained from uppermost Hauterivian to lowermost Aptian belemnite rostra, which were collected in well-dated sections from the Vocontian Trough (southeastern France). This data set complements previously published belemnite-isotope records from the uppermost Berriasian-Hauterivian interval from the same basin. The belemnite carbon and oxygen isotope record is compared to the carbonate bulk-rock isotope record from the same sections, and from additional Italian sections. With regards to their long-term trends, both belemnite and whole-rock δ18O records are well correlated, except for the uppermost Hauterivian-lower Barremian interval, within which they deviate. This discrepancy is interpreted to be linked to the latest Hauterivian Faraoni oceanic anoxic event and its early Barremian aftermath. The Faraoni level is characterized by enhanced sea-water stratification, probably induced by the onset of a warmer and more humid climate along the northern Tethyan margin. The early Barremian was characterized by stronger vertical sea-water mixing reflected by a decrease in density contrast between sea-surface and deeper waters. The belemnite oxygen isotope record shows a more stable evolution with smaller fluctuations than its bulk-rock counterpart, which indicates that deeper water masses were not as much subjected to density fluctuations as sea-surface water. The comparison of belemnite and bulk-rock carbon isotope records allows observing the impact of regional influence exerted by platform carbonate ooze shedding on the carbon cycle. Discrepancies in the two records are observed during time of photozoan carbonate platform growth. The strontium isotopic record shows a gradual increase from the uppermost Berriasian to the uppermost lower Barremian followed by a rapid decrease until the uppermost Barremian and a renewed small increase within the lowermost Aptian. The major inflection point in the uppermost lower Barremian appears to predate the onset in the formation of the Ontong-Java volcanic plateau.  相似文献   
186.
187.
188.
Located at the southern edge of the eastern Himalayan syntaxis, the Central Myanmar Basin (CMB) is divided into several Tertiary sub‐basins that have been almost continuously filled since the Indo‐Asia collision. They are currently drained by the Irrawaddy River, which flows down the eastern Tibetan Plateau and the Sino‐Burman Ranges. Tracing sediment provenance from the CMB is thus critical for reconstructing the past denudation of the Himalayan‐Tibetan orogen; it is especially relevant since a popular drainage scenario involves the capture of the Tsangpo drainage system in Tibet by a precursor to the Irrawaddy River. Here, we document the provenance of sediment samples from the Minbu Sub‐Basin at the southern edge of the CMB, which is traversed by the modern stream of the Irrawaddy River. Samples ranging in age from middle Eocene to Pleistocene were investigated using Nd isotopes, trace element geochemistry and sandstone modal compositions. Our data provide no evidence of a dramatic provenance shift; however, sandstone petrography, trace element ratios and isotopic values display long‐term trends indicating a gradual decrease of the volcanic input and its replacement by a dominant supply from the Burmese basement. These trends are interpreted to reflect the progressive denudation of the Andean‐type volcanic arc that extended onto the Burmese margin, along the flank of the modern Sino‐Burman Ranges, where most of the post‐collisional deformation of central Myanmar is located. Though our results do not exclude an ephemeral or diluted contribution from a past Tsangpo‐Irrawaddy connection, sedimentation rates suggest that this hypothesis is unlikely before the development of a stable Tsangpo‐Brahmaputra River in the Miocene. These results thus suggest that the central Myanmar drainage basin has remained restricted to the Sino‐Burman Ranges since the beginning of the India‐Asia collision.  相似文献   
189.
This article compares two fuzzy approaches to land suitability evaluations, Analytical Hierarchy Process (AHP) and Ideal Point. The methods were evaluated using a case study which models the opportunities for wheat production under irrigation conditions in the north‐western region of Jeffara Plain, Libya. A number of relevant soil and landscape criteria were identified through a review of the literature and their weights specified as a result of discussions with local experts. The results of the Fuzzy AHP showed that the majority of the study area has membership values to the set of suitability between 0.40 and 0.50, while the results of the Ideal Point approach revealed most of the study area to have membership values between 0.30 and 0.40. While the Fuzzy AHP and Ideal Point approaches accommodate the continuous nature of many soil properties and produce more intuitive distributions of land suitabilities values, the Fuzzy AHP approach was found to be better than Fuzzy Ideal Point. This was due to the latter's tendency to be biased towards positive and negative ideal values.  相似文献   
190.
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.Despite a large dispersion of yield changes ranging from −50% to +90%, the median is a yield loss near −11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, −18% median response) than in southern West Africa (Guinean countries, −13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near −15% with most intense warming, highlighting the importance of global warming mitigation.The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号