首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   0篇
大气科学   6篇
地球物理   15篇
地质学   39篇
海洋学   6篇
天文学   10篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   5篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1983年   2篇
  1978年   2篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
31.
The heat capacities of the international reference clay mineral chlorite CCa-2 from Flagstaff Hill, California, were measured by low temperature adiabatic calorimetry and differential scanning calorimetry, from 5 to 520 K (at 1 bar). The studied chlorite is a Fe-bearing trioctahedral chlorite with an intermediary composition between ideal clinochlore (Si3Al)(Mg5Al)O10(OH)8 and chamosite (Si3Al)(Fe5Al)O10(OH)8. Only few TiO2 impurities were detected in the natural chlorite sample CCa-2. Its structural formula, obtained after subtracting the remaining TiO2 impurities, is (Si2.633Al1.367)(Al1.116Mg2.952Mn0.012Ca0.011)O10(OH)8. From the heat capacity results, the entropy, standard entropy of formation and heat content of the chlorite were deduced. At 298.15 K, the heat capacity of the chlorite is 547.02 (±0.27) J mol−1 K−1 and the molar entropy is 469.4 (±2.9) J mol−1 K−1. The standard molar entropy of formation of the clay mineral from the elements is −2169.4 (±4.0) J mol−1 K−1.  相似文献   
32.
The transport of woody debris from urban surfaces,through local urban waterways,to constriction and blockage risk locations is not well understood.Flume trials have identified debris and watercourse dimensions as influential factors on debris movement,and large woody debris movement has been traced in the natural rural environment using time series photography,active transponders,and field surveys.Using novel passive transponder technology,small woody debris has been traced through an urban case study watercourse to establish key influential factors on urban debris transport.Through incorporating urban debris transport detail into the source and deposition process,a complete picture of urban debris transport can be created,supporting effective culvert and trash screen design,watercourse maintenance and blockage risk assessment.This case study highlights that factors beyond watercourse depth and velocity are influential in debris movement within an urban watercourse.Debris dimension and source location upstream are shown to significantly affect the potential for debris to reach a downstream constriction,illustrating a possible distance limitation in nuisance flow debris blockage risk.  相似文献   
33.
The continental shelf in the Arctic north of Russia consists of a series of epicontinental seas, which are the offshore continuation of potentially oil and gas basins on land. The geology of all these epicontinental seas is poorly known, due to the remoteness, the extreme climatic conditions and the extensive costs associated with seismic exploration. Radar altimeter sensors thus provide an invaluable tool for studying the geological structures off the coast. The unique ERS-1 contribution comes from its high latitude coverage (81.5 deg south to north), and the space and time density of its measurements (168-day repeat-orbit).The gravity anomaly field is derived from the geoid height measurements by computing the deflections of the vertical in the north-south and east-west directions and transforming these deflections into gravity anomalies. The gravimetry reveals interesting features of the basement of the Barents and Kara Seas which have not been chartered in recent, previous compilation maps of sedimentary thickness in the Arctic Ocean (Jackson and Oakey, 1988; Gramberg and Puscharovski, 1989). We obtain no indication of the SE-NW offshore Baikalian trend described by Fichler et al (1997) using ERS-1 gravimetry. Instead, the data indicate the presence of a north-south trending gravity high associated with the maximum sediment thickness within the South Barents Sea and the North Barents Sea Basins. Further geological studies are needed to interpret the gravimetric data, which directly addresses the problem of understanding the gravity signature of deep, old, sedimentary basins.  相似文献   
34.
Oxygen isotopic compositions of clay minerals were determined on representative samples of the volcano-sedimentary series from Site 841 ODP (Tonga forearc). This isotopic study has demonstrated an abnormally high crystallisation temperature of the clay minerals with respect to temperature expected in burial diagenesis. Formation temperatures obtained using 18O reach up to 200 °C in a Fe-chlorite-corrensite paragenesis found in the vicinity of basaltic andesite sills intruded into the Miocene tuffs. The paleothermal flux resulting from the cooling of the sills has produced very low grade contact metamorphism in the Miocene Tonga forearc deposits. The consequence of this was the formation of a large amount of hydrous silicates characterised near the sills by a Fe-clays-analcime mineralogical association. Received: 26 September 1997 / Accepted: 22 September 1998  相似文献   
35.
We have obtained optical spectrophotometry of the evolution of Comet 9P/Tempel 1 after the impact of the Deep Impact probe, using the Supernova Integral Field Spectrograph (SNIFS) at the UH 2.2-m telescope, as well as simultaneous optical and infrared spectra using the Lick Visible-to-Near-Infrared Imaging Spectrograph (VNIRIS). The spatial distribution and temporal evolution of the “violet band” CN (0-0) emission and of the 630 nm [OI] emission was studied. We found that CN emission centered on the nucleus increased in the 2 h after impact, but that this CN emission was delayed compared to the light curve of dust-scattered sunlight. The CN emission also expanded faster than the cloud of scattering dust. The emission of [OI] at 630 nm rose similarly to the scattered light, but then remained nearly constant for several hours after impact. On the day following the impact, both CN and [OI] emission concentrated on the comet nucleus had returned nearly to pre-impact levels. We have also searched for differences in the scattering properties of the dust ejected by the impact compared to the dust released under normal conditions. Compared to the pre-impact state of the comet, we find evidence that the color of the comet was slightly bluer during the post-impact rise in brightness. Long after the impact, in the following nights, the comet colors returned to their pre-impact values. This can be explained by postulating a change to a smaller particle size distribution in the ejecta cloud, in agreement with the findings from mid-infrared observations, or by postulating a large fraction of clean ice particles, or by a combination of these two.  相似文献   
36.
Mining/smelting wastes and reservoir sediment cores from the Lot River watershed were studied using mineralogical (XRD, SEM–EDS, EMPA) and geochemical (redox dynamics, selective extractions) approaches to characterize the main carrier phases of trace metals. These two approaches permitted determining the role of post-depositional redistribution processes in sediments and their effects on the fate and mobility of trace metals. The mining/smelting wastes showed heterogeneous mineral compositions with highly variable contents of trace metals. The main trace metal-bearing phases include spinels affected by secondary processes, silicates and sulfates. The results indicate a clear change in the chemical partitioning of trace metals between the reservoir sediments upstream and downstream of the mining/smelting activities, with the downstream sediments showing a 2-fold to 5-fold greater contribution of the oxidizable fraction. This increase was ascribed to stronger post-depositional redistribution of trace metals related to intense early diagenetic processes, including dissolution of trace metal-bearing phases and precipitation of authigenic sulfide phases through organic matter (OM) mineralization. This redistribution is due to high inputs (derived from mining/smelting waste weathering) at the water–sediment interface of (i) dissolved SO4 promoting more efficient OM mineralization, and (ii) highly reactive trace metal-bearing particles. As a result, the main trace metal-bearing phases in the downstream sediments are represented by Zn- and Fe-sulfides, with minor occurrence of detrital zincian spinels, sulfates and Fe-oxyhydroxides. Sequestration of trace metals in sulfides at depth in reservoir sediments does not represent long term sequestration owing to possible resuspension of anoxic sediments by natural (floods) and/or anthropogenic (dredging, dam flush) events that might promote trace metal mobilization through sulfide oxidation. It is estimated that, during a major flood event, about 870 t of Zn, 18 t of Cd, 25 t of Pb and 17 t of Cu could be mobilized from the downstream reservoir sediments along the Lot River by resuspension-induced oxidation of sulfide phases. These amounts are equivalent to 13-fold (Cd), ∼6-fold (Zn), 4-fold (Pb) the mean annual inputs of the respective dissolved trace metals into the Gironde estuary.  相似文献   
37.
Sprites, jets and elves called Transient Luminous Events (TLE), observed in the middle and upper atmosphere above thunderstorms, are the manifestation of intense energy exchanges between the troposphere, stratosphere and mesosphere. Different types of luminous emissions have been identified by ground-based observations, showing the complexity of these phenomena. Space missions showed that transient emissions in the Earth atmosphere are very broad including Radio Frequency (RF), IR to FUV radiations and X-gamma ray emissions called Terrestrial Gamma Flashes (TGF) with energies reaching 30 Mev. However, there are no global observations of these events together. This paper reviews space observations performed up to now and emphasizes the challenges of the future space missions in global measurements of all possible emissions together for the understanding of the physical mechanisms at the origin of these phenomena and their effects on the Earth environment.  相似文献   
38.
The aim of the present work was to study the thermodynamic equilibria between water and a homo-ionic montmorillonite SWy-1 saturated by different cations. The choice of this smectite is justified by the large set of experimental data available from the literature for eight different interlayer cations: Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+. In particular, studies by [Cases et al., 1992], [Cases et al., 1997] and [Bérend et al., 1995] are providing heat of adsorption data, pairs of desorption-adsorption isotherms, and information about the partition of adsorption-desorption water molecules between external surfaces and internal spaces. By calculating the effective amount of hydration water as the difference between the so-called gravimetric water and the surface covering water, a thermodynamic model was then developed, based on the concept of Ransom and Helgeson (1994) considering an asymmetric subregular binary solid solution between a fully hydrated and a anhydrous smectite. A set of six thermodynamic parameters ( and four Margules parameters) was extracted by a least square method from measurements of enthalpies of adsorption and paired adsorption-desorption isotherms for each interlayer cation. These six initial parameters were then used to determine a complete set of standard thermodynamic hydration parameters (, heat capacity, molar volume, and number of interlayer H2O) and quantify, for each cation, the number of moles of hydration water molecules as a function of relative humidity and temperature. The validation of the standard state thermodynamic properties of hydration for each end member was carried out using three approaches: (1) a comparison with experimental isotherms obtained on hetero-ionic and homo-ionic SWy-1 smectite at different temperatures; (2) a comparison with the experimental integral enthalpy and entropy of hydration of the SWy-1 smectite; and (3) a comparison with experimental isotherms acquired on various smectites (Upton, MX80, Arizona) with different layer charges.Eventually, the present work demonstrates that, from a limited number of measurements, it is possible to provide the hydration thermodynamic parameters for hydrated smectites with different compositions and under different conditions of temperature and relative humidity, using the newly developed predictive model.  相似文献   
39.
Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.  相似文献   
40.
An analytical error analysis of profile-derived fluxes of heat, moisture, and momentum, along with stability and roughness length, is performed using the accuracies of the constituent temperature, humidity, and wind speed measurements. Five experiments, representing more than two thirds of the existing marine profile data presently contained in the literature, are compared. Much of the profile data examined was used to develop the transfer coefficients presently employed by a large number of competing bulk aerodynamic flux schemes. Depending upon the experiment, typical profile-method measurement errors were found to range from 15 to 35% for a sensible heat flux of ± 10 W m-2, from 15 to 105% for a latent heat flux of ± 100 W m-2, from 10 to 40% for a stress of 0.05 N m-2, from 15 to 60% for a Monin-Obukhov stability of ± 0.05, and from 25 to 100% for a roughness length of 2 × 10-4 m. Smaller magnitude flux values were found to contain typical errors as large as 100% for sensible heat flux, 300% for latent heat flux, and 60% for stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号