首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   27篇
  国内免费   2篇
测绘学   10篇
大气科学   32篇
地球物理   87篇
地质学   163篇
海洋学   22篇
天文学   53篇
自然地理   18篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   12篇
  2020年   5篇
  2019年   8篇
  2018年   22篇
  2017年   20篇
  2016年   26篇
  2015年   15篇
  2014年   20篇
  2013年   30篇
  2012年   27篇
  2011年   29篇
  2010年   18篇
  2009年   22篇
  2008年   11篇
  2007年   17篇
  2006年   15篇
  2005年   19篇
  2004年   13篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1951年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有385条查询结果,搜索用时 921 毫秒
171.
We describe the development, implementation, and first analyses of the performance of a debris-flow warning system for the Illgraben catchment and debris fan area. The Illgraben catchment (9.5 km2), located in the Canton of Valais, Switzerland, in the Rhone River valley, is characterized by frequent and voluminous sediment transport and debris-flow activity, and is one of the most active debris-flow catchments in the Alps. It is the site of an instrumented debris-flow observation station in operation since the year 2000. The residents in Susten (municipality Leuk), tourists, and other land users, are exposed to a significant hazard. The warning system consists of four modules: community organizational planning (hazard awareness and preparedness), event detection and alerting, geomorphic catchment observation, and applied research to facilitate the development of an early warning system based on weather forecasting. The system presently provides automated alert signals near the active channel prior to (5–15 min) the arrival of a debris flow or flash flood at the uppermost frequently used channel crossing. It is intended to provide data to support decision-making for warning and evacuation, especially when unusually large debris flows are expected to leave the channel near populated areas. First-year results of the detection and alert module in comparison with the data from the independent debris-flow observation station are generally favorable. Twenty automated alerts (alarms) were issued, which triggered flashing lights and sirens at all major footpaths crossing the channel bed, for three debris flows and 16 flood flows. Only one false alarm was issued. The major difficulty we encountered is related to the variability and complexity of the events (e.g., events consisting of multiple surges) and can be largely solved by increasing the duration of the alarm. All of the alarms for hazardous events were produced by storms with a rainfall duration and intensity larger than the threshold for debris-flow activity that was defined in an earlier study, supporting our intention to investigate the use of rainfall forecasts to increase the time available for warning and implementation of active countermeasures.  相似文献   
172.
This paper brings a new perspective on the large scale dynamics of severe heat wave (HW) events that commonly affect southern Australia. Through an automatic tracking scheme, the cyclones and anticyclones associated with HWs affecting Melbourne, Adelaide and Perth are tracked at both the surface and upper levels, producing for the first time a synoptic climatology that reveals the broader connections associated with these extreme phenomena. The results show that a couplet (or pressure dipole) formed by transient cyclones and anticyclones can reinforce the HW similarly to what is observed in cold surges (CS), with an obvious opposite polarity. Our results show that there is a large degree of mobility in the synoptic signature associated with the passage of the upper level ridges before they reach Australia and the blocking is established, with HW-associated surface anticyclones often initiating over the west Indian Ocean and decaying in the eastern Pacific. In contrast to this result the 500?hPa anticyclone tracks show a very small degree of mobility, responding to the dominance of the upper level blocking ridge. An important feature of HWs is that most of the cyclones are formed inland in association with heat troughs, while in CS the cyclones are typically maritime (often explosive), associated with a strong cold front. Hence the influence of the cyclone is indirect, contributing to reinforce the blocking ridge through hot and dry advection on the ridge’s western flank. Additional insights are drawn for the record Adelaide case of March 2008 with fifteen consecutive days above 35°C breaking the previous record by 7?days. Sea surface temperatures suggest a significant air-sea interaction mechanism, with a broad increase in the meridional temperature gradient over the Indian Ocean amplifying the upstream Rossby waves that can trigger HW events. A robust cooling of the waters close to the Australian coast also contributes to the maintenance of the blocking highs locally, which is a fundamental ingredient to sustain the HWs.  相似文献   
173.
The Greenland ice sheet is projected to be strongly affected by global warming. These projections are either issued from downscaling methods (such as Regional Climate Models) or they come directly from General Circulation Models (GCMs). In this context, it is necessary to evaluate the accuracy of the daily atmospheric circulation simulated by the GCMs, since it is used as forcing for downscaling methods. Thus, we use an automatic circulation type classification based on two indices (Euclidean distance and Spearman rank correlation using the daily 500 hPa geopotential height) to evaluate the ability of the GCMs from both CMIP3 and CMIP5 databases to simulate the main circulation types over Greenland during summer. For each circulation type, the GCMs are compared to three reanalysis datasets on the basis of their frequency and persistence differences. For the current climate (1961–1990), we show that most of the GCMs do not reproduce the expected frequency and the persistence of the circulation types and that they simulate poorly the observed daily variability of the general circulation. Only a few GCMs can be used as reliable forcings for downscaling methods over Greenland. Finally, when applying the same approach to the future projections of the GCMs, no significant change in the atmospheric circulation over Greenland is detected, besides a generalised increase of the geopotential height due to a uniform warming of the atmosphere.  相似文献   
174.
New aspects of the genesis and partial tropical transition of a rare hybrid subtropical cyclone on the eastern Australian coast are presented. The ‘Duck’ (March 2001) attracted more recent attention due to its underlying genesis mechanisms being remarkably similar to the first South Atlantic hurricane (March 2004). Here we put this cyclone in climate perspective, showing that it belongs to a class within the 1 % lowest frequency percentile in the Southern Hemisphere as a function of its thermal evolution. A large scale analysis reveals a combined influence from an existing tropical cyclone and a persistent mid-latitude block. A Lagrangian tracer showed that the upper level air parcels arriving at the cyclone’s center had been modified by the blocking. Lorenz energetics is used to identify connections with both tropical and extratropical processes, and reveal how these create the large scale environment conducive to the development of the vortex. The results reveal that the blocking exerted the most important influence, with a strong peak in barotropic generation of kinetic energy over a large area traversed by the air parcels just before genesis. A secondary peak also coincided with the first time the cyclone developed an upper level warm core, but with insufficient amplitude to allow for a full tropical transition. The applications of this technique are numerous and promising, particularly on the use of global climate models to infer changes in environmental parameters associated with severe storms.  相似文献   
175.
We have determined the partition coefficients of a large number of trace elements between CaTiO3 perovskite and anhydrous silicate melts at atmospheric pressure and 3 GPa. Determination of the concentration limits of Henrys law behaviour in the CaO-Al2O3–SiO2–TiO2 system reveals that the incorporation of rare earth elements (REE) and tetravalent large ion lithophile elements (LILE4+ such as U and Th) at the Ca-site of CaTiO3 perovskite occurs with charge compensation through Ca-vacancy formation rather than by coupled substitution of Al for Ti. When melt composition is varied, we find that partition coefficients for REE and Th are strong functions of the CaO content of the melt. The observed trends are in excellent agreement with those predicted from the Ca-vacancy model. Given that they adopt the same crystal structure and have similar trace element partitioning behaviour, CaTiO3 perovskite and the deep mantle phase CaSiO3 perovskite can be considered analogous to one another. When the analogy is pursued in detail, we find that partitioning into both phases follows the composition-dependence predicted by the Ca-vacancy model. Thus, substitution of REE, U4+ and Th into CaSiO3 in the lower mantle also occurs with Ca-vacancy formation to balance charge. Furthermore when 2+, 3+ and 4+ partition coefficients for both phases are plotted as functions of CaO melt content, the trends for CaSiO3 and CaTiO3 appear to be continuous. This surprising result means that partitioning into Ca-perovskite is independent of pressure and temperature and also of whether or not the host is CaSiO3 or CaTiO3. One implication is that CaSiO3 crystallising from a peridotitic magma ocean may have partition coefficients for Th and U up to about 400. Crystallisation and sequestration of as little as 0.25 volume% of this phase in the lower mantle early in earth history would make a significant contribution to current mantle heat production.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
176.
Abstract. An investigation was conducted on transplantation in the Mediterranean seagrass, Posidonia oceanica. The effects of rhizome length and season of transplantation were investigated over the first year of growth in relation to survival and development in orthotropic shoots. Twelve batches, each composed of 36 transplants bearing one leaf bundle, were detached and planted at the same site and depth. They were fixed horizontally to mesh supports. These twelve batches, comprising three classes of rhizome length (10, 15, and 20 cm), were transplanted at four times of year. Mortality was highest for transplants made in early summer, when temperatures exceeded 20°C, and lowest for those made in autumn. Although initial rhizome length had no discernible effect on subsequent mortality, it was positively related to the length of the necrosed portion one year later. The most successful transplants, made in autumn with 10 to 15 cm long rhizomes, gave survival rates of 92 to 97%. These results should help to develop transplantation techniques for restoring damaged sites.  相似文献   
177.
A deficit in precipitation may impact greatly on soil moisture, snowpack, streamflow, groundwater and reservoir storage. Among the several approaches available to investigate this phenomenon, one of the most applied is the analysis of dry spells. In this study, a non-homogeneous Poisson model has been applied to a set of high-quality daily rainfall series, recorded in southern Italy (Calabria region) during the period 1981–2010, for the stochastic analysis of dry spells. Firstly, some statistical details of the Poisson models were presented. Then, the proposed model has been applied to the analysis of long dry spells. In particular, a Monte Carlo technique was performed to reproduce the characteristics of the process. As a result, the main characteristics of the long dry spells have shown patterns clearly related to some geographical features of the study area, such as elevation and latitude. The results obtained from the stochastic modelling of the long dry spells proved that the proposed model is useful for the probability evaluation of drought, thus improving environmental planning and management.  相似文献   
178.

Background

LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m?2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m.

Results

The results show that LiDAR pulse density of 5 pulses m?2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m?2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system.

Conclusion

LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m?2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.
  相似文献   
179.
180.
Evapotranspiration (ET) plays an important role in integrated water resource planning, development and management. This process is particularly relevant in semiarid regions. The aim of this study is, hence, to compare spatial and temporal patterns of actual ET, as well as the temporal trends in two different semiarid forests, Caatinga (Brazil) and Tierra de Pinares (Spain). We used the surface energy balance algorithm for land (SEBAL) to assess actual evapotranspiration (ETa) in both areas. In the Brazilian semiarid forest, Caatinga is the main vegetation, while it is Pinares in Spain. For this purpose, 69 Landsat-5 and 42 Landsat-8 images (1995–2019) were used. The Mann–Kendall test was applied to assess the occurrence of trends in precipitation, temperature and potential ET data; and the Temporal Stability Index (TSI) to know which areas have greater seasonal ETa. The annual amplitude of the potential evapotranspiration (ET0) is the same in both areas, however, the Caatinga values are higher. In the Caatinga forest, when ET0 presents its highest values throughout the year, ETa presents the lowest, and vice versa. In the Pinares forest, ETa follows the ET0 dynamics during the year, and the difference between ET0 and ETa is maximum during the summer. The Caatinga forest showed a greater spatial variation of ETa than the Pinares forest as well as a greater extension with lower temporal stability of ETa than the Pinares forest. Both the Caatinga forest and the Pinares forest showed significant positive trends in annual ET0 and ETa. We estimate that the value of ETa increases more rapidly in Pinares than in the Brazilian Caatinga. Taking Caatinga as a hydrological mirror, some consequences are expected to Pinares, such as significant changes in the water balance, increase of biodiversity vulnerability, and reduction of water availability in soil and reservoirs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号