首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   15篇
  国内免费   2篇
测绘学   2篇
大气科学   14篇
地球物理   61篇
地质学   139篇
海洋学   20篇
天文学   23篇
综合类   1篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   9篇
  2018年   15篇
  2017年   9篇
  2016年   15篇
  2015年   12篇
  2014年   15篇
  2013年   15篇
  2012年   13篇
  2011年   11篇
  2010年   17篇
  2009年   16篇
  2008年   9篇
  2007年   8篇
  2006年   8篇
  2005年   16篇
  2004年   7篇
  2003年   7篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1973年   1篇
  1969年   1篇
排序方式: 共有270条查询结果,搜索用时 562 毫秒
161.
Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (δ44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of δ44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, δ44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the δ44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.  相似文献   
162.
Yavapaiite, KFe(SO4)2, is a rare mineral in nature, but its structure is considered as a reference for many synthetic compounds in the alum supergroup. Several authors mention the formation of yavapaiite by heating potassium jarosite above ca. 400°C. To understand the thermal decomposition of jarosite, thermodynamic data for phases in the K-Fe-S-O-(H) system, including yavapaiite, are needed. A synthetic sample of yavapaiite was characterized in this work by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal analysis. Based on X-ray diffraction pattern refinement, the unit cell dimensions for this sample were found to be a = 8.152 ± 0.001 Å, b = 5.151 ± 0.001 Å, c = 7.875 ± 0.001 Å, and β = 94.80°. Thermal decomposition indicates that the final breakdown of the yavapaiite structure takes place at 700°C (first major endothermic peak), but the decomposition starts earlier, around 500°C. The enthalpy of formation from the elements of yavapaiite, KFe(SO4)2, ΔH°f = −2042.8 ± 6.2 kJ/mol, was determined by high-temperature oxide melt solution calorimetry. Using literature data for hematite, corundum, and Fe/Al sulfates, the standard entropy and Gibbs free energy of formation of yavapaiite at 25°C (298 K) were calculated as S°(yavapaiite) = 224.7 ± 2.0 J.mol−1.K−1 and ΔG°f = −1818.8 ± 6.4 kJ/mol. The equilibrium decomposition curve for the reaction jarosite = yavapaiite + Fe2O3 + H2O has been calculated, at pH2O = 1 atm, the phase boundary lies at 219 ± 2°C.  相似文献   
163.
The reductive capacity of Fe(II) present in anoxic sediment pore waters affects biogeochemically significant processes that occur in these environments, such as metal speciation, mineral solubility, nutrient bioavailability, and the transformation of anthropogenic organic compounds. We studied the reduction of pentachloronitrobenzene (PCNB) in natural pore waters to elucidate the reductive capacity of Fe(II) complexes, and monitored the redox-active species responsible for the observed kinetics. Differential pulse polarography (DPP) scans of sediment pore waters from a coastal Lake Erie wetland (Old Woman Creek National Estuarine Research Reserve, Huron, OH) revealed an increase in both Fe(III)-organic and Fe(II) species to a depth of ∼30 cm below the sediment-water interface. Concentrations of dissolved organic matter (DOM) in pore waters increased while pH decreased with depth. We found that Fe(II) was necessary for rapid PCNB reduction (<24 h), and observed faster reduction with increased pH. PCNB reduction in preserved pore waters (acidified to pH 2.5 after pore water extraction and raised to the native pH (6.7-7.6) prior to reaction) was similar to that observed in a model system containing Fe(II) and fulvic acid isolated from this site. Conversely, PCNB reduction in unaltered pore water was significantly slower than that observed in preserved pore water, indicating that the Fe(II) speciation and its reductive capacity differed. DPP scans of pore waters used for kinetic studies confirmed that pH-adjustment affected FeT speciation in the pore waters, as the Fe(III)-DOM peak current was lowered or disappeared completely in the preserved pore water samples. These data show that pH-adjustment of pore waters presumably alters both their complexation chemistry and reactivity towards PCNB, and shows how small changes in Fe complexation can potentially affect redox chemistry in anoxic environments. Our results also show that reactive organic Fe(II) complexes are naturally present in wetland sediment pore waters, and that these species are potentially important mediators of Fe(II)/Fe(III) redox biogeochemistry in anoxic sedimentary environments.  相似文献   
164.
Paleoproterozoic mafic igneous rocks (2450–1970 Ma) are exposed in the form of layered intrusions, dykes, and volcanic rocks in the Karelian, Kola and Murmansk provinces and in the form of dykes and small intrusions in the Belomorian Province, Eastern Fennoscandian Shield. The age and sequence of mafic dyke emplacement during the Paleoproterozoic are very similar in these regions. Further comparisons of geochemical characteristics of mafic dyke swarms in the Belomorian Province and neighboring cratons show considerable similarities.  相似文献   
165.
Ocean acidification due to anthropogenic CO2 emissions is a dominant driver of long-term changes in pH in the open ocean, raising concern for the future of calcifying organisms, many of which are present in coastal habitats. However, changes in pH in coastal ecosystems result from a multitude of drivers, including impacts from watershed processes, nutrient inputs, and changes in ecosystem structure and metabolism. Interaction between ocean acidification due to anthropogenic CO2 emissions and the dynamic regional to local drivers of coastal ecosystems have resulted in complex regulation of pH in coastal waters. Changes in the watershed can, for example, lead to changes in alkalinity and CO2 fluxes that, together with metabolic processes and oceanic dynamics, yield high-magnitude decadal changes of up to 0.5 units in coastal pH. Metabolism results in strong diel to seasonal fluctuations in pH, with characteristic ranges of 0.3 pH units, with metabolically intense habitats exceeding this range on a daily basis. The intense variability and multiple, complex controls on pH implies that the concept of ocean acidification due to anthropogenic CO2 emissions cannot be transposed to coastal ecosystems directly. Furthermore, in coastal ecosystems, the detection of trends towards acidification is not trivial and the attribution of these changes to anthropogenic CO2 emissions is even more problematic. Coastal ecosystems may show acidification or basification, depending on the balance between the invasion of coastal waters by anthropogenic CO2, watershed export of alkalinity, organic matter and CO2, and changes in the balance between primary production, respiration and calcification rates in response to changes in nutrient inputs and losses of ecosystem components. Hence, we contend that ocean acidification from anthropogenic CO2 is largely an open-ocean syndrome and that a concept of anthropogenic impacts on marine pH, which is applicable across the entire ocean, from coastal to open-ocean environments, provides a superior framework to consider the multiple components of the anthropogenic perturbation of marine pH trajectories. The concept of anthropogenic impacts on seawater pH acknowledges that a regional focus is necessary to predict future trajectories in the pH of coastal waters and points at opportunities to manage these trajectories locally to conserve coastal organisms vulnerable to ocean acidification.  相似文献   
166.
167.
168.
Groundwater flow through coarse blocky landforms contributes to streamflow in mountain watersheds, yet its role in the alpine hydrologic cycle has received relatively little attention. This study examines the internal structure and hydrogeological characteristics of an inactive rock glacier in the Canadian Rockies using geophysical imaging techniques, analysis of the discharge hydrograph of the spring draining the rock glacier, and chemical and stable isotopic compositions of source waters. The results show that the coarse blocky sediments forming the rock glacier allow the rapid infiltration of snowmelt and rain water to an unconfined aquifer above the bedrock surface. The water flowing through the aquifer is eventually routed via an internal channel parallel to the front of the rock glacier to a spring, which provides baseflow to a headwater stream designated as a critical habitat for an at‐risk cold‐water fish species. Discharge from the rock glacier spring contributes up to 50% of basin streamflow during summer baseflow periods and up to 100% of basin streamflow over winter, despite draining less than 20% of the watershed area. The rock glacier contains patches of ground ice even though it may have been inactive for thousands of years, suggesting the resiliency of the ground thermal regime under a warming climate.  相似文献   
169.
Photo‐identification has been established as a helpful tool in cetacean research. However, no study to date has attempted to apply this method to short‐beaked common dolphins (Delphinus delphis L.). We present here the results of two studies that were conducted concurrently in Mercury Bay and the Hauraki Gulf on the north‐east coast of New Zealand's North Island. Methods for distinguishing between individual dolphins are discussed. Sighting records of recognisable individuals indicate that some common dolphins move between Mercury Bay and the Hauraki Gulf (100 km distance), as well as between Mercury Bay and Whakatane (200 km distance). Common dolphin abundance and site fidelity appeared to be greater in the Hauraki Gulf than in Mercury Bay. A selection of photographs of distinct individuals is presented to allow future studies to compare their sighting records to ours, which may help establish the extent of home ranges, site fidelity, and possibly even longevity for common dolphins.  相似文献   
170.
A small scale and temporally limited CO2 injection test was performed in a shallow aquifer to investigate the geochemical impact of CO2 upon such aquifers and to apply and verify different monitoring methods. Detailed site investigation coupled with multiphase simulations were necessary to design the injection experiment and to set up the monitoring network, before CO2 was injected over a ten-day period at three injection wells, at a depth of 18?m below surface level into a quaternary sand aquifer located close to the town of Wittstock in Northeast Germany. Monitoring methods comprised groundwater sampling and standard analyses, as well as trace element analyses and isotope analyses; geoelectrical borehole monitoring; passive samplers to analyse temporally integrated for cations and multi-parameter probes that can measure continuously for dissolved CO2, pH and electrical conductivity. Due to CO2 injection, total inorganic carbon concentrations increased and pH decreased down to a level of 5.1. Associated reactions comprised the release of major cations and trace elements. Geoelectrical monitoring, as well as isotope analyses and multi-parameter probes proved to be suitable methods for monitoring injected CO2 and/or the alteration of groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号