首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   18篇
  国内免费   4篇
测绘学   12篇
大气科学   31篇
地球物理   131篇
地质学   191篇
海洋学   22篇
天文学   137篇
综合类   1篇
自然地理   25篇
  2023年   4篇
  2022年   6篇
  2021年   7篇
  2020年   12篇
  2019年   11篇
  2018年   24篇
  2017年   22篇
  2016年   36篇
  2015年   28篇
  2014年   36篇
  2013年   30篇
  2012年   29篇
  2011年   34篇
  2010年   25篇
  2009年   36篇
  2008年   34篇
  2007年   27篇
  2006年   22篇
  2005年   17篇
  2004年   16篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   7篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   9篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1940年   2篇
  1939年   1篇
排序方式: 共有550条查询结果,搜索用时 0 毫秒
21.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   
22.
We present here some initial results from the ongoing XMM-Newton bright serendipitous survey. The survey is aimed at selecting and spectroscopically identifying a large and statistically representative sample of bright (f x ≳ 7× 10−14 c.g.s) serendipitous X-ray sources in the 0.5–4.5 keV energy band (BSS) and a complementary (smaller) sample in the 4.5–7.5 keV energy band (HBSS). The work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributors directly founded by ESA member states and the USA(NASA) and on observations collected at TNG. The TNG telescope is operated on the island of La Palma by the Centro Galileo Galilei of the INAF in the Spanish Observatorio del Roque de Los Muchachos of the Instituto de Astrofísica de Canarias. On behalf of the XMM-Newton Survey Science Center.  相似文献   
23.
24.
MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth?CMoon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA??s lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.  相似文献   
25.
Interferometry in the optical and near infrared has so far played a marginal role in Extragalactic Astronomy. Active Galactic Nuclei are the brightest and most compact extragalactic sources, nonetheless only a very limited number could be studied with speckle interferometry and none with long baseline interferometry. The VLTI will allow the study of moderately faint extragalactic objects with very high spatial resolution thus opening a new window on the universe. With this paper we focus on three scientific cases to show how AMBER and MIDI can be used to tackle open issues in extragalactic astronomy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
26.
Establishing connections between meteorites and their parent asteroids is an important goal of planetary science. Several links have been proposed in the past, including a spectroscopic match between basaltic meteorites and (4) Vesta, that are helping scientists understand the formation and evolution of the Solar System bodies. Here we show that the shocked L chondrite meteorites, which represent about two thirds of all L chondrite falls, may be fragments of a disrupted asteroid with orbital semimajor axis a=2.8 AU. This breakup left behind thousands of identified 1–15 km asteroid fragments known as the Gefion family. Fossil L chondrite meteorites and iridium enrichment found in an ≈467 Ma old marine limestone quarry in southern Sweden, and perhaps also ∼5 large terrestrial craters with corresponding radiometric ages, may be tracing the immediate aftermath of the family-forming collision when numerous Gefion fragments evolved into the Earth-crossing orbits by the 5:2 resonance with Jupiter. This work has major implications for our understanding of the source regions of ordinary chondrite meteorites because it implies that they can sample more distant asteroid material than was previously thought possible.  相似文献   
27.
How big were the first planetesimals? We attempt to answer this question by conducting coagulation simulations in which the planetesimals grow by mutual collisions and form larger bodies and planetary embryos. The size frequency distribution (SFD) of the initial planetesimals is considered a free parameter in these simulations, and we search for the one that produces at the end objects with a SFD that is consistent with Asteroid belt constraints. We find that, if the initial planetesimals were small (e.g. km-sized), the final SFD fails to fulfill these constraints. In particular, reproducing the bump observed at diameter in the current SFD of the asteroids requires that the minimal size of the initial planetesimals was also ∼100 km. This supports the idea that planetesimals formed big, namely that the size of solids in the proto-planetary disk “jumped” from sub-meter scale to multi-kilometer scale, without passing through intermediate values. Moreover, we find evidence that the initial planetesimals had to have sizes ranging from 100 to several 100 km, probably even 1000 km, and that their SFD had to have a slope over this interval that was similar to the one characterizing the current asteroids in the same size range. This result sets a new constraint on planetesimal formation models and opens new perspectives for the investigation of the collisional evolution in the Asteroid and Kuiper belts as well as of the accretion of the cores of the giant planets.  相似文献   
28.
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465]. First, we study the effects of sweeping secular resonances driven by the depletion of the solar nebula. We find that these sweeping secular resonances are incapable of giving sufficient dynamical excitation to the asteroids for nebula depletion timescales consistent with estimates for solar-type stars, and in addition cannot cause significant mass depletion in the asteroid belt or produce the observed radial mixing of different asteroid taxonomic types. Second, we study the effects of planetary embryos embedded in the primordial asteroid belt. These embedded planetary embryos, combined with the action of jovian and saturnian resonances, can lead to dynamical excitation and radial mixing comparable to the current asteroid belt. The mass depletion driven by embedded planetary embryos alone, even in the case of an eccentric Jupiter and Saturn, is roughly 10-20× less than necessary to explain the current mass of the main belt, and thus a secondary depletion event, such as that which occurs naturally in the Nice Model, is required. We discuss the implications of our new simulations for the dynamical and collisional evolution of the main belt.  相似文献   
29.
30.
We describe a methodology for identifying complex rift zones on recent or active volcanoes, where structures hidden by recent deposits and logistical conditions might prevent carrying out detailed fieldwork. La Réunion island was chosen as a test-site. We used georeferenced topographic maps, aerial photos and digital terrain models to perform a statistical analysis of several morphometric parameters of pyroclastic cones. This provides a great deal of geometric information that can help in distinguishing the localisation and orientation of buried magma-feeding fractures, which constitute the surface expression of rift zones. It also allowed the construction of a complete GIS database of the pyroclastic cones. La Réunion is a perfect example where past and active volcanic rift zones are mostly expressed by clusters of monogenic centres. The data has been validated in the field and compared and integrated with the distribution and geometry of dyke swarms. Results show the presence of several main and secondary rift segments of different ages, locations and orientations, whose origin is discussed considering regional tectonics, local geomorphology, and volcano deformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号