首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   5篇
测绘学   1篇
大气科学   2篇
地球物理   17篇
地质学   12篇
海洋学   1篇
天文学   7篇
自然地理   6篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2003年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有46条查询结果,搜索用时 125 毫秒
21.
Patagonia is commonly seen as an exceptionally pristine area because of its wildlife and practically unpolluted waters. However, during the twentieth century the burning of natural forests was one of the most important human activities in Northern Chilean Patagonia. Some estimations indicate that three million hectares were burned during the first three decades of the century. Hence the objective of this study was to evaluate the impacts of the historical fires in Lake Burgos (45º42′S) and Lake Thompson (45º38′S) in Chilean Patagonia. The impact was measured by evaluating chironomid assemblage since they are sensitive enough to be used as an indicator of aquatic ecosystem health. Fires have a direct and drastic effect on a lake watershed but also indirectly affect a lake ecosystem, changing sedimentation patterns or increasing nutrient inputs. In the studied lakes the periods with higher prevalence of fires were identified by charcoal analysis, while organic matter and magnetic susceptibility allowed the confirmation of pre-fire and post-fire periods. The chironomid composition was evaluated through a PCA and an analysis of similarity (ANOSIM) to test the significance among periods while a Detrended Correspondence Analysis was applied to the chironomid assemblage downcore to assess compositional structure and taxa turnover. In Lake Burgos the ANOSIM test indicated significant differences between the pre-fire and fire periods (p < 0.05), while in Lake Thompson differences were not significant. However, in Lake Thompson the PCA clearly separated the pre-fire from the fire period but not the fire from the post-fire periods. In both lakes chironomid composition changed in relation to the period of higher prevalence of fires, which in turn implies catchment changes, pollution, and other anthropogenic impacts. Particularly a marked change in mesotrophic/eutrophic taxa was detected, reflecting an increase in nutrient input due to deforestation. Our findings point out that the lacustrine ecosystems are still affected by the impact of fires and the subsequent increase in nutrient supply that occurred almost 50 years ago. No sign of reverting to pre-disturbance conditions was observed, which makes these lakes highly sensitive to current human-induced impacts.  相似文献   
22.
Watersheds are complex systems due to their surface and subsurface spatially connected water fluxes and biochemical processes that shape Earth's critical zone. In intensively managed landscapes, the implementation of watershed management practices (WMPs) regulate their short‐term responses, whereas climate variability controls the long‐term processes. Understanding their responses to anthropogenic and natural stressors requires a holistic approach that takes into account their multiscale spatio‐temporal linkages. The objective of this study was to simulate the impacts of spatially and temporally varying WMPs and projected climate changes on the surface and groundwater resources in the Upper Sangamon River Basin (USRB), a watershed in central Illinois greatly impacted by agricultural and industrial operations. The physically based hydrologic model MIKE‐SHE was used to simulate the hydrologic responses of the basin to different WMPs and climatic conditions. The simulation of a WMP was varied spatially across the basin to determine the spectrum of responses and critical conditions. In general, the wetlands and forested riparian buffer scenarios were found to cause a reduction in the average streamflow, whereas crop rotation had varied responses depending on the location of implementation and the climate condition assumed. Reductions of up to 30% in the average streamflow were found for the forested riparian buffer under the ESM 2M climate projections, whereas an increase of up to 13% with the crop rotation schemes under CM3 climate was predicted. The model results showed that the installation of tile drains across the USRB increased the water table depth (from ground level) by up to 56%, making crop production possible. Groundwater level in USRB appeared to be more sensitive to future climatic conditions than to WMP implementation. The impacts of WMPs are determined to depend on the climate conditions under which they are applied. Investigating individual and combined stressors' effects over the critical zone at a watershed scale can lead to a more comprehensive analysis of the risk and trade‐offs in every managerial decision that will enable an efficient use of resources.  相似文献   
23.
24.
Shrimp larvae (Penaeus vannamei) collected from an uncontaminated area were challenged with sublethal concentrations of organochlorine pesticides. The effects of treatment with lindane, lorsban, chlordane and DDT, were a 5, −12, 13 and 21% increase in the larval respiratory rate, respectively. Glycogen synthesis decreased from the 0.471 μg g−1 h−1 of the control, to 0.455, 0.415, 0.400 and 0.365 μg g−1 h−1, for larvae submitted to DDT, chlordane, lindane and lorsban. In addition, we measured decreases in nucleic acid content, from 20.4 and 34.9% in larvae challenged by chlordane and lorsban, respectively, and values close to 25% for two other pesticides tested. These results indicate drastic metabolic changes, which may impinge on the commercial fishery and culture of this organisms.  相似文献   
25.
26.
The geochemistry of the metavolcanic rocks from the Granjeno Schist in northeastern Mexico indicates an origin in different tectonic environments: mid‐ocean ridge and ocean island. High ratios of Hf/Th and Th/Nb (4.4–14 and 0.08–0.15), low ratios of LaN/YbN and LaN/SmN (0.74–1.7 and 0.60–1.4) and depleted LREE patterns in metabasalt display mid‐ocean ridge characteristics. In contrast, the pattern of trace‐element ratios and REEs in metabasalt and metapillow lava 60 km to the west indicates a magma source with ocean‐island basalt characteristics. Both areas were metamorphosed during the Late Carboniferous (300 ± 4 Ma). Estimated metamorphic conditions deduced from white mica and chlorite compositions, distinguish greenschist facies (350 °C and 4 kbar) for the mid‐ocean ridge basalt, and prehnite–pumpellyite facies (250 °C and 2.5 kbar) for the ocean‐island‐type basalt. This metamorphism took place at an active continental margin during Pennsylvanian time. Our new tectonic model, which differs from earlier models, suggests that the origin of the Granjeno Schist is related to a subduction zone located at the western margin of Pangaea, active after Laurentia–Gondwana collision. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
27.
Michoacán, as one of the most species-rich provinces of Mexico and with high levels of endemism, was used for testing the potential of a conservation approach based on biodiversity as determined by scientists and local stakeholder's preferences. The resulting zones covered over 17% of the area of Michoacán in 18 zones. As a result of this study the first “large” tropical dry forest biosphere reserve in Mexico is currently being established. In conclusion, landscape-based conservation zoning based on local stakeholders' perspectives as well as on critical biodiversity indicators, proved to be effective for achieving science-based and politically acceptable nature conservation schemes.  相似文献   
28.
29.
High arsenic (As) groundwater is widely distributed in northwestern Hetao Plain, an arid region with sluggish groundwater flow. Observed As concentration in groundwater from wells ranges from 76 to 1,093 μg/l. Most water samples have high total dissolved solids, with Cl and HCO3 as the dominant anions and Na as the dominant cation. The major hydrochemical types of most saline groundwaters are Na–Mg–Cl–HCO3 and Na–Mg–Cl. By contrast, fresh groundwaters generally belong to the Na–Mg–HCO3 type. High concentrations of arsenic in shallow aquifers are associated with strongly reducing conditions, as evidenced by high concentrations of dissolved organic carbon, ammonium, as well as dissolved sulfide and Fe, dominance of arsenite, relatively low concentrations of nitrate and sulfate, and occasionally high content of dissolved methane (CH4). High As groundwaters from different places at Hetao Plain experienced different redox processes. Fluoride is also present in high As groundwater, ranging between 0.40 and 3.36 mg/l. Although fluorosis poses an additional health problem in the region, it does not correlate well with As in spatial distribution. Geochemical analysis indicates that evapotranspiration is an important process controlling the enrichment of Na and Cl, as well as trace elements such as As, B, and Br in groundwater. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
30.
Rainfall retention and runoff detention are likely the most important ecosystem services provided by extensive green roofs (EGRs) that contribute to urban stormwater mitigation and management. However, the hydrological performance and runoff generation mechanisms of mature, well-established EGRs in tropical regions remain poorly understood. This study evaluated the rainfall retention, discharge detention times and processes of runoff generation in two neighbouring 20-year-old EGRs with different slopes (2° and 14° for EGRns and EGRws, respectively) and management practices in Mexico City; results were compared with those obtained in a conventional roof (CR, 2° slope). Precipitation, substrate moisture and storm runoff were continuously measured during the 2017 and 2018 rainy seasons (May–November). Results showed spatial differences in substrate properties and moisture within and between green roofs. In general, higher bulk densities and a wide range of variation in water content characterized the bare substrate areas compared to those below vegetation. Greatest increases in substrate moisture and storm runoff were observed in the steeper green roof. Subsurface flow was the dominant process controlling the amount and timing of stormflow in the EGRs. The occurrence of saturation excess overland flow was small and detected when large rain events were preceded by high wetness conditions. The main factors influencing the hydrological responses of the green roofs were their substrate hydrophysical properties, related mostly to vegetation cover, management and age, and to much lesser extent to slope and substrate depth. On average, rainfall retention was ~60% in the EGRs with significantly longer delays and prolonged runoff times (100 and 340 min, respectively) compared to CR (3%, 20 min, and 258 min, respectively). Overall, these findings highlight the potential of EGRs in reducing stormflow and peak discharges for most rainfall in Mexico City, and thus mitigating the risk of saturation and overflow of urban drainages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号