首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   59篇
  国内免费   22篇
测绘学   59篇
大气科学   121篇
地球物理   405篇
地质学   673篇
海洋学   136篇
天文学   382篇
综合类   18篇
自然地理   176篇
  2022年   10篇
  2021年   14篇
  2020年   30篇
  2019年   32篇
  2018年   42篇
  2017年   34篇
  2016年   37篇
  2015年   37篇
  2014年   45篇
  2013年   80篇
  2012年   62篇
  2011年   81篇
  2010年   97篇
  2009年   120篇
  2008年   95篇
  2007年   76篇
  2006年   71篇
  2005年   68篇
  2004年   63篇
  2003年   74篇
  2002年   60篇
  2001年   29篇
  2000年   43篇
  1999年   26篇
  1998年   23篇
  1997年   23篇
  1996年   24篇
  1995年   25篇
  1994年   28篇
  1993年   29篇
  1992年   24篇
  1990年   21篇
  1989年   26篇
  1988年   26篇
  1987年   22篇
  1986年   20篇
  1985年   34篇
  1984年   32篇
  1983年   28篇
  1982年   24篇
  1981年   36篇
  1980年   26篇
  1979年   16篇
  1978年   17篇
  1977年   22篇
  1976年   17篇
  1975年   13篇
  1974年   20篇
  1973年   17篇
  1971年   8篇
排序方式: 共有1970条查询结果,搜索用时 62 毫秒
251.
Results of 13-cm-wavelength radar observations and V-filter photoelectric observations of Ra- Shalom during its 1981 Aug–Sep apparition are reported. The radar data yid detections of echoes in the same sense of circular polarization as transmitted (i.e., the SC sense) as well as in the opposite (OC) sense. The estimate of the ratio of SC to OC echo power, μc = 0.14 ± 0.02, indicates that most, but certainly not all, of the backscattering is due to single reflections from surface elements that are fairly smooth at decimeter scales. The value obtained for the OC radar cross section on Aug 26 (1.2 ± 0.3 km2) is about three times larger than those obtained on Aug 23, 24, and 25. The echo bandwidth appears to be within about 1.5 Hz of 5.0 Hz on each date. The photoelectric data suggest a value, Psyn = 19.79 hr, for the synodic rotation period, and yield a composite lightcurve with two pairs of extrema. Combining this value for Psyn with a firm lower bound (4 Hz) on the maximum echo bandwidth yields a lower bound of 1.4 km on the maximum distance between Ra-Shalom's spin axis and any point on its surface.  相似文献   
252.
New spectra of Jupiter in the region 0.93–1.63 are presented. Laboratory comparisons of spectra of NH3 and CH4 permit estimates of the absorbing pathlength for various bands of these two gases. Abundances in a single transmission through the Jupiter atmosphere, above the mean reflecting level, vary from 10 to 100 m-atm for CH4 and from 0.2–5 m-atm for NH3, depending on the bands considered. Upper limits for other gases are derived from new laboratory spectra and comparison with the Jupiter spectra presented herein. These are as follows: C2H2<2 m-atm, H2S<0.25 m-atm, HCN<0.05 m-atm, CH3NH2<0.02 m-atm. A table summarizing the chemical composition of Jupiter's atmosphere is presented.  相似文献   
253.
The emergence of low-frequency, high-amplitude, quasi-periodic (100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. This middle Pleistocene transition (MPT) began 1250 ka and was complete by 700 ka. Its onset was accompanied by decreases in sea surface temperatures (SSTs) in the North Atlantic and tropical-ocean upwelling regions and by an increase in African and Asian aridity and monsoonal intensity. During the MPT, long-term average ice volume gradually increased by 50 m sea-level equivalent, whereas low-frequency ice-volume variability experienced a 100-kyr lull centered on 1000 ka followed by its reappearance 900 ka, although as a broad band of power rather than a narrow, persistent 100-kyr cycle. Additional changes at 900 ka indicate this to be an important time during the MPT, beginning with an 80-kyr event of extreme SST cooling followed by the partial recovery and subsequent stabilization of long-term North Atlantic and tropical ocean SSTs, increasing Southern Ocean SST variability primarily associated with warmer interglacials, the loss of permanent subpolar sea-ice cover, and the emergence of low-frequency variability in Pacific SSTs and global deep-ocean circulation. Since 900 ka, ice sheets have been the only component of the climate system to exhibit consistent low-frequency variability. With the exception of a near-universal organization of low-frequency power associated with marine isotope stages 11 and 12, all other components show an inconsistent distribution of power in frequency-time space, suggesting a highly nonlinear system response to orbital and ice-sheet forcing.Most hypotheses for the origin of the MPT invoke a response to a long-term cooling, possibly induced by decreasing atmospheric pCO2. None of these hypotheses, however, accounts for the geological constraint that the earliest Northern Hemisphere ice sheets covered a similar or larger area than those that followed the MPT. Given that the MPT was associated with an increase in ice volume, this constraint requires that post-MPT ice sheets were substantially thicker than pre-MPT ice sheets, indicating a change in subglacial conditions that influence ice dynamics. We review evidence in support of the hypothesis that such an increase in ice thickness occurred as crystalline Precambrian Shield bedrock became exposed by glacial erosion of a thick mantle of regolith. This exposure of a high-friction substrate caused thicker ice sheets, with an attendant change in their response to the orbital forcing. Marine carbon isotope data indicate a rapid transfer of organic carbon to inorganic carbon in the ocean system during the MPT. If this carbon came from terrigenous sources, an increase in atmospheric pCO2 would be likely, which is inconsistent with evidence for widespread cooling, Apparently rapid carbon transfer from terrestrial sources is difficult to reconcile with gradual erosion of regolith. A more likely source of organic carbon and nutrients (which would mitigate pCO2 rise) is from shelf and upper slope marine sediments, which were fully exposed for the first time in millions of years in response to thickening ice sheets and falling sealevels during the MPT. Modeling indicates that regolith erosion and resulting exposure of crystalline bedrock would cause an increase in long-term silicate weathering rates, in good agreement with marine Sr and Os isotopic records. We use a carbon cycle model to show that a post-MPT increase in silicate weathering rates would lower atmospheric pCO2 by 7–12 ppm, suggesting that the attendant cooling may have been an important feedback in causing the MPT.  相似文献   
254.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   
255.
During the last interglacial insolation maximum (Eemian, MIS 5e) the tropical and subtropical African hydrological cycle was enhanced during boreal summer months. The climate anomalies are examined with a General Circulation Model (ECHAM4) that is equipped with a module for the direct simulation of 18O and deuterium (H 2 18 O and HDO, respectively) in all components of the hydrological cycle. A mechanism is proposed to explain the physical processes that lead to the modelled anomalies. Differential surface heating due to anomalies in orbital insolation forcing induce a zonal flow which results in enhanced moisture advection and precipitation. Increased cloud cover reduces incoming short wave radiation and induces a cooling between 10°N and 20°N. The isotopic composition of rainfall at these latitudes is therefore significantly altered. Increased amount of precipitation and stronger advection of moisture from the Atlantic result in isotopically more depleted rainfall in the Eemian East African subtropics compared to pre-industrial climate. The East–West gradient of the isotopic rainfall composition reverses in the Eemian simulation towards depleted values in the east, compared to more depleted western African rainfall in the pre-industrial simulation. The modelled re-distribution of δ18O and δD is the result of a change in the forcing of the zonal flow anomaly. We conclude that the orbitally induced forcing for African monsoon maxima extends further eastward over the continent and leaves a distinct isotopic signal that can be tested against proxy archives, such as lake sediment cores from the Ethiopian region.  相似文献   
256.
Climate change is expected to bring potentially significant changes to Washington State’s natural, institutional, cultural, and economic landscape. Addressing climate change impacts will require a sustained commitment to integrating climate information into the day-to-day governance and management of infrastructure, programs, and services that may be affected by climate change. This paper discusses fundamental concepts for planning for climate change and identifies options for adapting to the climate impacts evaluated in the Washington Climate Change Impacts Assessment. Additionally, the paper highlights potential avenues for increasing flexibility in the policies and regulations used to govern human and natural systems in Washington.  相似文献   
257.
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277–296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.  相似文献   
258.
S. Alan Stern 《Icarus》2009,199(2):571-573
In this Note, I present first-order scaling calculations to examine the efficacy of impacts by Kuiper Belt debris in causing regolith exchange between objects in the Pluto system. It is found that ejecta can escape Nix and Hydra with sufficient velocity to reach one another, as well as Charon, and even Pluto. The degree of ejecta exchanged between Nix and Hydra is sufficient to cover these bodies with much more material than is required for photometrically change. In specific, Nix and Hydra may have exchanged as up to 10s of meters of regolith, and may have covered Charon to depths up to 14 cm with their ejecta. Pluto is likely unaffected by most Nix and Hydra ejecta by virtue of a combination of dynamical shielding from Charon and Pluto's own annual atmospheric frost deposition cycle. As a result of ejecta exchange between Nix, Hydra, and Charon, these bodies are expected to evolve their colors, albedos, and other photometric properties to be self similar. These are testable predictions of this model, as is the prediction that Nix and Hydra will have diameters near 50 km, owing to having a Charon-like albedo induced by ejecta exchange. As I discuss, this ejecta exchange process can also be effective in many KBOs and asteroids with satellites, and may be the reason that very many KBO and asteroid satellite systems have like colors.  相似文献   
259.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   
260.
The known close approach of Asteroid (99942) Apophis in April 2029 provides the opportunity for the case study of a potentially hazardous asteroid in advance of its encounter. The visible to near-infrared (0.55 to 2.45 μm) reflectance spectrum of Apophis is compared and modeled with respect to the spectral and mineralogical characteristics of likely meteorite analogs. Apophis is found to be an Sq-class asteroid that most closely resembles LL ordinary chondrite meteorites in terms of spectral characteristics and interpreted olivine and pyroxene abundances, although we cannot rule out some degree of partial melting. A meteorite analog allows some estimates and conjectures of Apophis' possible range of physical properties such as the grain density and micro-porosity of its constituent material. Composition and size similarities of Apophis with (25143) Itokawa suggest a total porosity of 40% as a “current best guess” for Apophis. Applying these parameters to Apophis yields a mass estimate of 2×1010 kg with a corresponding energy estimate of 375 Mt for its potential hazard. Substantial unknowns, most notably the total porosity, allow uncertainties in these mass and energy estimates to be as large as factors of two or three.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号