首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   59篇
  国内免费   22篇
测绘学   59篇
大气科学   121篇
地球物理   405篇
地质学   673篇
海洋学   136篇
天文学   382篇
综合类   18篇
自然地理   176篇
  2022年   10篇
  2021年   14篇
  2020年   30篇
  2019年   32篇
  2018年   42篇
  2017年   34篇
  2016年   37篇
  2015年   37篇
  2014年   45篇
  2013年   80篇
  2012年   62篇
  2011年   81篇
  2010年   97篇
  2009年   120篇
  2008年   95篇
  2007年   76篇
  2006年   71篇
  2005年   68篇
  2004年   63篇
  2003年   74篇
  2002年   60篇
  2001年   29篇
  2000年   43篇
  1999年   26篇
  1998年   23篇
  1997年   23篇
  1996年   24篇
  1995年   25篇
  1994年   28篇
  1993年   29篇
  1992年   24篇
  1990年   21篇
  1989年   26篇
  1988年   26篇
  1987年   22篇
  1986年   20篇
  1985年   34篇
  1984年   32篇
  1983年   28篇
  1982年   24篇
  1981年   36篇
  1980年   26篇
  1979年   16篇
  1978年   17篇
  1977年   22篇
  1976年   17篇
  1975年   13篇
  1974年   20篇
  1973年   17篇
  1971年   8篇
排序方式: 共有1970条查询结果,搜索用时 210 毫秒
211.
Abstract— Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and IIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilites are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e., Al-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, lherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic phases were formed by shock metamorphism. Martensite (α2-Fe,Ni) has a distorted body-centered-cubic structure and formed by a shear transformation from taenite during shock reheating and rapid cooling. The C polymorphs diamond, lonsdaleite and chaoite formed by shock from graphite. Suessite formed in the North Haig ureilite by reduction of Fe and Si (possibly from olivine) via reaction with carbonaceous matrix material. Ringwoodite, the spinel form of (Mg,Fe)2SiO4, and majorite, a polymorph of (Mg,Fe)SiO3 with the garnet structure, formed inside shock veins in highly shocked ordinary chondrites. Secondary minerals in meteorite finds that formed during terrestrial weathering include oxides and hydroxides formed directly from metallic Fe-Ni by oxidation, phosphates formed by the alteration of schreibersite, and sulfates formed by alteration of troilite.  相似文献   
212.
Abstract— Richfield is a moderately shocked (shock stage S4) LL3.7 genomict breccia find consisting mainly of light-colored recrystallized clasts and dark clasts exhibiting significant silicate darkening; a few impact-melt-rock clasts and LL5 chondrite clasts also occur. The cosmic-ray exposure age of 14.5 Ma is indistinguishable from the main exposure peak for LL chondrites (15 Ma). Although the exposure ages indicate little He loss, the gas-retention ages indicate high gas losses that must have occurred prior to or during ejection from the LL parent body.  相似文献   
213.
Auld Reekie MIST     
The magnetosphere, ionosphere and solar–terrestrial physics community gathered at the University of Edinburgh from 29 March – 1 April 2004, for a meeting including a day of joint sessions with UKSP. The four day programme reflected the breadth and depth of the science covered. Neil Arnold and Alan Thomson report; the UKSP meeting is covered in the following pages.  相似文献   
214.
Solar Physics - We measure geometric and physical parameters oftransverse oscillations in 26 coronal loops, out of the 17 events described in Paper I by Schrijver, Aschwanden, and Title (2002)....  相似文献   
215.
The existence of Uranus and Neptune presents severe difficulties for the core accretion model for the formation of ice giant planets. We suggest an alternative mechanism, namely disk instability leading to the formation of gas giant protoplanets, coagulation and settling of dust grains to form ice-rock cores at their centers, and photoevaporation of their gaseous envelopes by a nearby OB star, as a possible means of forming ice giant planets.  相似文献   
216.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
217.
Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetotelluric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-profile conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.  相似文献   
218.
The Pranhita-Godavari Basin in central eastern India is one of the Proterozoic "Purana" basins of cratonic India.New geochronology demonstrates that it has a vast depositional history of repeated basin reactivation from the Palaeoproterozoic to the Mesozoic.U-Pb laser ablation inductively coupled plasma mass spectrometry dating of detrital zircons from two samples of the Somanpalli Group—a member of the oldest sedimentary cycle in the valley-constrains its depositional age to ~1620 Ma and demonstrates a tripartite age provenance with peaks at ~3500 Ma,~2480 Ma and ~1620 Ma,with minor age peaks in the Eoarchaean(~3.8 Ga) and at ~2750 Ma.These ages are consistent with palaeocurrent data suggesting a southerly source from the Krishna Province and Enderby Land in East Antarctica.The similarity in the maximum depositional age with previously published authigenic glauconite ages suggest that the origin of the Pranhita-Godvari Graben originated as a rift that formed at a high angle to the coeval evolving late Meosproterozoic Krishna Province as Enderby Land collided with the Dharwar craton of India.In contrast,detrital zircons from the Cycle III Sullavai Group red sandstones yielded a maximum depositional age of 970±20 Ma and had age peaks of ~2550 Ma,~1600 Ma and then a number of Mesoproterozoic detrital zircons terminating in three analyses at ~970 Ma.The provenance of these is again consistent with a southerly source from the Eastern Ghats Orogen and Antarctica.Later cycles of deposition include the overlying Albaka/Usur Formations and finally the late Palaeozoic to Mesozoic Gondwana Supergroup.  相似文献   
219.
http://www.sciencedirect.com/science/article/pii/S1674987114001601   总被引:3,自引:2,他引:1  
Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time[P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular India.An inferred peak metamorphic assemblage of garnet,K-feldspar.sillimanite,plagioclase,magnetite,ilmenite,spinel and melt is consistent with peak metamorphic pressures of 6-8 kbar and temperatures in excess of 900℃.Subsequent growth of cordierite and biotite record high-temperature retrograde decompression to around 5 kbar and 800 C.SHRIMP U-Pb dating of magmatic zircon cores suggests that the sedimentary protoliths were in part derived from felsic igneous rocks with Palaeoproterozoic crystallisation ages.New growth of metamorphic zircon on the rims of detrital grains constrains the onset of melt crystallisation,and the minimum age of the metamorphic peak,to around560 Ma.The data suggest two stages of monazite growth.The first generation of REE-enriched monazite grew during partial melting along the prograde path at around 570 Ma via the incongruent breakdown of apatite.Relatively REE-depleted rims,which have a pronounced negative europium anomaly,grew during melt crystallisation along the retrograde path at around 535 Ma.Our data show the rocks remained at suprasolidus temperatures for at least 35 million years and probably much longer,supporting a long-lived high-grade metamorphic history.The metamorphic conditions,timing and duration of the implied clockwise P-T-t path are similar to that previously established for other regions in peninsular India during the Ediacaran to Cambrian assembly of that part of the Gondwanan supercontinent.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号