首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   567篇
  免费   24篇
  国内免费   4篇
测绘学   4篇
大气科学   36篇
地球物理   145篇
地质学   275篇
海洋学   46篇
天文学   57篇
综合类   3篇
自然地理   29篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   8篇
  2018年   12篇
  2017年   15篇
  2016年   21篇
  2015年   14篇
  2014年   17篇
  2013年   32篇
  2012年   29篇
  2011年   24篇
  2010年   29篇
  2009年   39篇
  2008年   20篇
  2007年   30篇
  2006年   30篇
  2005年   33篇
  2004年   36篇
  2003年   28篇
  2002年   29篇
  2001年   14篇
  2000年   12篇
  1999年   18篇
  1998年   9篇
  1997年   6篇
  1996年   9篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
排序方式: 共有595条查询结果,搜索用时 15 毫秒
591.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   
592.
The Istituto di Geoscienze e Georisorse (IGG), on behalf and with the support of the International Atomic Energy Agency (IAEA), prepared eight geological materials (three natural waters and five rocks and minerals), intended for a blind interlaboratory comparison of measurements of boron isotopic composition and concentration. The materials were distributed to twenty seven laboratories - virtually all those performing geochemical boron isotope analyses in the world -which agreed to participate in the intercomparison exercise. Only fifteen laboratories, however, ultimately submitted the isotopic and/or concentration results they obtained on the intercomparison materials. The results demonstrate that interlaboratory reproducibility is not well reflected by the precision values reported by the individual laboratories and this observation holds true for both boron concentration and isotopic composition. The reasons for the discrepancies include fractionations due to the chemical matrix of materials, relative shift of the zero position on the δ11B scale and a lack of well characterized materials for calibrating absolute boron content measurements. The intercomparison materials are now available at the IAEA (solid materials) and IGG (waters) for future distribution.  相似文献   
593.
Improvement in the osmoregulation capacity via nutritional supplies is vitally important in shrimp aquaculture.The effects of dietary protein levels on the osmoregulation capacity of the Pacific white shrimp(L.vannamei) were investigated.This involved an examination of growth performance,glutamate dehydrogenase(GDH) and Na+-K+ ATPase mRNA expression,,and GDH activity in muscles and gills.Three experimental diets were formulated,containing 25%,40%,and 50% dietary protein,and fed to the shrimp at a salinity of 25.After 20 days,no significant difference was observed in weight gain,though GDH and Na+-K+ ATPase gene expression and GDH activity increased with higher dietary protein levels.Subsequently,shrimp fed diets with 25% and 50% dietary protein were transferred into tanks with salinities of 38 and 5,respectively,and sampled at weeks 1 and 2.Shrimp fed with 40% protein at 25 in salinity(optimal conditions) were used as a control.Regardless of the salinities,shrimp fed with 50% dietary protein had significantly higher growth performance than other diets;no significant differences were found in comparison with the control.Shrimp fed with 25% dietary protein and maintained at salinities of 38 and 5 had significantly lower weight gain values after 2 weeks.Ambient salinity change also stimulated the hepatosomatic index,which increased in the first week and then recovered to a relatively normal level,as in the control,after 2 weeks.These findings indicate that in white shrimp,the specific protein nutrient and energy demands related to ambient salinity change are associated with protein metabolism.Increased dietary protein level could improve the osmoregulation capacity of L.vannamei with more energy resources allocated to GDH activity and expression.  相似文献   
594.
The stability of the thermohaline circulation of modern and glacial climates is compared with the help of a two dimensional ocean—atmosphere—sea ice coupled model. It turns out to be more unstable as less freshwater forcing is required to induce a polar halocline catastrophy in glacial climates. The large insulation of the ocean by the extensive sea ice cover changes the temperature boundary condition and the deepwater formation regions moves much further South. The nature of the instability is of oceanic origin, identical to that found in ocean models under mixed boundary conditions. With similar strengths of the oceanic circulation and rates of deep water formation for warm and cold climates, the loss of stability of the cold climate is due to the weak thermal stratification caused by the cooling of surface waters, the deep water temperatures being regulated by the temperature of freezing. Weaker stratification with similar overturning leads to a weakening of the meridional oceanic heat transport which is the major negative feedback stabilizing the oceanic circulation. Within the unstable regime periodic millennial oscillations occur spontaneously. The climate oscillates between a strong convective thermally driven oceanic state and a weak one driven by large salinity gradients. Both states are unstable. The atmosphere of low thermal inertia is carried along by the oceanic overturning while the variation of sea ice is out of phase with the oceanic heat content. During the abrupt warming events that punctuate the course of a millennial oscillation, sea ice variations are shown respectively to damp (amplify) the amplitude of the oceanic (atmospheric) response. This sensitivity of the oceanic circulation to a reduced concentration of greenhouse gases and to freshwater forcing adds support to the hypothesis that the millennial oscillations of the last glacial period, the so called Dansgaard—Oeschger events, may be internal instabilities of the climate system.  相似文献   
595.
Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1 × 1) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1 × 1 provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NO y for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ ozone, N2O and NO y levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号