首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   1篇
测绘学   2篇
大气科学   4篇
地球物理   31篇
地质学   7篇
海洋学   5篇
天文学   1篇
自然地理   14篇
  2021年   2篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2006年   3篇
  2005年   3篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
  1956年   1篇
  1953年   1篇
排序方式: 共有64条查询结果,搜索用时 140 毫秒
61.
Spectral ratios of teleseismic direct and scattered P waves observed in the Valles Caldera, New Mexico, show a systematic pattern of low amplitudes at sites inside the caldera relative to sites on or outside the ring fracture. Waveforms recorded at caldera stations are considerably more complex than those recorded outside the caldera. The data used in this study were collected during a passive seismic monitoring experiment conducted in 1987. Twenty-four teleseismic events were recorded on two linear arrays spanning the caldera. To first order, the pattern of low amplitudes did not vary with source incidence angle or azimuth of approach, and could not be explained by anomalous amplification at the ring fracture. This observation suggests the presence of a shallow, attenuating zone associated with the caldera fill material inside of the ring fracture. We estimated the general features of the caldera's near-surface structure for the two-dimensional vertical cross section beneath the array, using a modification of the Aki-Larner discrete-wavenumber method to forward model the observed amplitude variations. Our results indicate that the caldera fill material must be subdivided into at least two distinct zones: a strongly attenuating lower zone, extending to depths in excess of 4 km, and a mildly attenuating surface layer. To fit the data we had to assign an unrealistically low value to seismic Q in the deeper attenuating anomaly. We attribute this to the inability of the Aki-Larner method to account for strong re-direction of energy away from the caldera due to local heterogeneity that we could not include within the low-Q anomaly. This interpretation is consistent with the pervasive, fractured hydrothermal system that is known to exist in the caldera fill material.  相似文献   
62.
This paper introduces a statistical technique, based on the recently developed Multiscale Trend Analysis (MTA), for quantifying correlations between non-stationary processes observed at irregular non-coincident time grids. We apply this technique to studying the temporal correlation between the dynamics of the ductile and brittle layers in the lithosphere. Our results confirm the previously reported strong positive correlation between the coda Q–1 and seismicity and its drop before major earthquakes observed in California. The proposed technique has significant advantages over the conventional correlation analysis: (1) MTA allows one to work directly with non-coincident time series without preliminary resampling the data; (2) the correlation is defined via the stable objects—trends—rather than noisy individual observations, hence it is highly robust; (3) the correlations are quantified at different time scales. The suggested technique seems promising for the wide range of applied problems dealing with coupled time series.  相似文献   
63.
Summary. Three-component VSP borehole seismograms taken in the vicinity of an active normal fault in California show strong systematic shear-wave splitting that increases with proximity to the fault. Using Červený's method of characteristics for ray tracing in anisotropic heterogeneous media and Hudson's formulation of elastic constants for media-bearing aligned fractures, we have fitted a suite of P, SV and SH hanging-wall and foot-wall travel times with a simple model of aligned fractures flanking the fault zone. The dominant fracture set is best modelled as parallel to the fault plane and increasing in density with approach to the fault. The increase in fracture density is non-uniform (power law or Gaussian) with respect to distance to the fault. Although the hanging-wall and the foot-wall rock are petrologically the same unit, the fracture halo is more intense and extensive in the hanging wall than in the foot wall. Upon approach to the fault plane, the fracture density or fracture-density gradient becomes too great for the seismic response to be computed by Hudson–Červený procedures (the maximum fracture density that can be modelled is about 0.08). Within this 25 m fracture domain it appears more useful to model the fault and near field fractures as a low-velocity waveguide. We observe production of trapped waves within the confines of the intense fracture interval.  相似文献   
64.
Dieterich simulated aftershocks numerically, using a one-dimensional mass-spring model with a time-dependent friction law. But an important precursory phenomenon called quiescence cannot be produced by this model unless, as Mikumo and Miyatake showed with a three-dimensional continuum model, a somewhat arbitrary bimodal distribution of frictional strength is assumed. Here we used the friction law proposed by Stuart, which is a displacement hardening-softening model, and simulated the quiescence. By varying the parameters of the friction law in our mass-spring model, we found a variety of seismicity patterns. When we choose extremely large critical displacement we get a recurrent sequence of creep followed by mainshock without small earthquakes. But when we choose a critical displacement in the same order of magnitude as the slip-weakening critical displacement estimated by Papageorgiou and Aki from strong motion data, we get a normal seismicity pattern, including quiescence before large events. This simple model points to a promising approach for the interpretation of the rupture process during an earthquake by the same physical model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号