首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1028篇
  免费   38篇
  国内免费   24篇
测绘学   39篇
大气科学   50篇
地球物理   199篇
地质学   652篇
海洋学   37篇
天文学   68篇
综合类   6篇
自然地理   39篇
  2023年   4篇
  2022年   35篇
  2021年   38篇
  2020年   35篇
  2019年   26篇
  2018年   85篇
  2017年   93篇
  2016年   70篇
  2015年   46篇
  2014年   66篇
  2013年   90篇
  2012年   46篇
  2011年   56篇
  2010年   40篇
  2009年   44篇
  2008年   38篇
  2007年   22篇
  2006年   28篇
  2005年   25篇
  2004年   19篇
  2003年   16篇
  2002年   19篇
  2001年   9篇
  2000年   13篇
  1999年   13篇
  1998年   3篇
  1997年   4篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1090条查询结果,搜索用时 15 毫秒
181.
Accurate prediction of the chemical constituents in major river systems is a necessary task for water quality management, aquatic life well-being and the overall healthcare planning of river systems. In this study, the capability of a newly proposed hybrid forecasting model based on the firefly algorithm (FFA) as a metaheuristic optimizer, integrated with the multilayer perceptron (MLP-FFA), is investigated for the prediction of monthly water quality in Langat River basin, Malaysia. The predictive ability of the MLP-FFA model is assessed against the MLP-based model. To validate the proposed MLP-FFA model, monthly water quality data over a 10-year duration (2001–2010) for two different hydrological stations (1L04 and 1L05) provided by the Irrigation and Drainage Ministry of Malaysia are used to predict the biochemical oxygen demand (BOD) and dissolved oxygen (DO). The input variables are the chemical oxygen demand (COD), total phosphate (PO4), total solids, potassium (K), sodium (Na), chloride (Cl), electrical conductivity (EC), pH and ammonia nitrogen (NH4-N). The proposed hybrid model is then evaluated in accordance with statistical metrics such as the correlation coefficient (r), root-mean-square error, % root-mean-square error and Willmott’s index of agreement. Analysis of the results shows that MLP-FFA outperforms the equivalent MLP model. Also, in this research, the uncertainty of a MLP neural network model is analyzed in relation to the predictive ability of the MLP model. To assess the uncertainties within the MLP model, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPU) and the band width of 95 percent confidence intervals (d-factors) are selected. The effect of input variables on BOD and DO prediction is also investigated through sensitivity analysis. The obtained values bracketed by 95PPU show about 77.7%, 72.2% of data for BOD and 72.2%, 91.6% of data for DO related to the 1L04 and 1L05 stations, respectively. The d-factors have a value of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to the 1L04 and 1L05 stations, respectively. Based on the values in both stations for the 95PPU and d-factor, it is concluded that the neural network model has an acceptably low degree of uncertainty applied for BOD and DO simulations. The findings of this study can have important implications for error assessment in artificial intelligence-based predictive models applied for water resources management and the assessment of the overall health in major river systems.  相似文献   
182.
The current research has been conducted to evaluate groundwater aquifers qualitatively in the area located in the Western side of Qena city. The Quaternary aquifer represents the main groundwater source in the study area. It exists under unconfined to semiconfined conditions at depths varying between 4 m due North and 80 m in the South. The chemical analyses of the groundwater samples indicate that 77% of the total samples are fresh and 20% are brackish, while only 3% are saline. In addition, the iso-salinity contour map indicates that the salinity increases towards the central and northern parts of the study area. The total and permanent hardness increase as water salinity increases and vice versa in case of temporary hardness in the groundwater samples. The chemical water types and the ion ratios indicate meteoric origin of groundwater as well as the dissolution of terrestrial and marine salts. The contribution of recent recharge from the River Nile to a few groundwater wells in the study area varies from low to high. In addition, the most recharge sources are from the precipitation. Nitrate concentrations in groundwater increase towards the central and Northern areas significantly elevated in response to increasing anthropogenic land uses. Much of the solutes and physicochemical parameters in these waters are under the undesirable limits of World Health Organization (WHO) for drinking purpose, and a plot of sodium adsorption ratio versus EC shows that about 23% of the groundwater samples are good water quality, about 45% of groundwater samples are moderate quality, and 23% of the groundwater samples are intermediate water class, while the rest of samples (9%) are out of the range.  相似文献   
183.
184.
The frequent appearance of some hydro-environmental hazard features, such as waterlogging and soil salinization along the susceptible zones at Northwest Sinai area (NWSA), has put serious challenges and obstacles for a correct and efficient land use planning of this region, for several decades. Although previous studies have shown that the whole region of Northern Sinai is greatly affected by the tectonic movements associated with the Syrian Arc folding system (SAS), NWSA is barren of any obvious surficial structures. The current work aims to investigate the effect of subsurface tectonic features on the hydrogeologic regime of NWSA.Hydrogeological and remote sensing data were integrated with ground geophysical gravity and magnetic measurements, using the geographic information system. Data integration asserts the role played by buried tectonic features not only in governing the landforms of the upper water-bearing quaternary formations but also in controlling their flow regime.Two major subsurface structures were identified through interpreting the geophysical measurements. A buried dome-like structure, dominating the central part of the mapped area, coincides with the radial flow pattern observed on the water table map. At the southwestern corner of the study area, an elevated groundwater level, caused by continuous groundwater accumulation at the discharge boundary, is superimposing a subsurface block-faulted depression. The waterlogging features (saturation of the soil by groundwater and inundation of local depressions due to rising of water table) dominating the discharge lowlands of NWSA support the conclusion that a buried block-faulted structure exerts a strong influence on the thickness and groundwater flow regime of the shallow quaternary aquifer.  相似文献   
185.
Characterizing the pore space of rock samples using three‐dimensional (3D) X‐ray computed tomography images is a crucial step in digital rock physics. Indeed, the quality of the pore network extracted has a high impact on the prediction of rock properties such as porosity, permeability and elastic moduli. In carbonate rocks, it is usually very difficult to find a single image resolution which fully captures the sample pore network because of the heterogeneities existing at different scales. Hence, to overcome this limitation a multiscale analysis of the pore space may be needed. In this paper, we present a method to estimate porosity and elastic properties of clean carbonate (without clay content) samples from 3D X‐ray microtomography images at multiple resolutions. We perform a three‐phase segmentation to separate grains, pores and unresolved porous phase using 19 μm resolution images of each core plug. Then, we use images with higher resolution (between 0.3 and 2 μm) of microplugs extracted from the core plug samples. These subsets of images are assumed to be representative of the unresolved phase. We estimate the porosity and elastic properties of each sample by extrapolating the microplug properties to the whole unresolved phase. In addition, we compute the absolute permeability using the lattice Boltzmann method on the microplug images due to the low resolution of the core plug images. In order to validate the results of the numerical simulations, we compare our results with available laboratory measurements at the core plug scale. Porosity average simulations for the eight samples agree within 13%. Permeability numerical predictions provide realistic values in the range of experimental data but with a higher relative error. Finally, elastic moduli show the highest disagreements, with simulation error values exceeding 150% for three samples.  相似文献   
186.
This paper investigates the effect of the gravity framing system on the overstrength and collapse risk of steel frame buildings with perimeter special moment frames (SMFs) designed in North America. A nonlinear analytical model that simulates the pinched hysteretic response of typical shear tab connections is calibrated with past experimental data. The proposed modeling approach is implemented into nonlinear analytical models of archetype steel buildings with different heights. It is found that when the gravity framing is considered as part of the analytical model, the overall base shear strength of steel frame buildings with perimeter SMFs could be 50% larger than that of the bare SMFs. This is attributed to the gravity framing as well as the composite action provided by the concrete slab. The same analytical models (i) achieve a static overstrength factor, Ωs larger than 3.0 and (ii) pass the collapse risk evaluation criteria by FEMA P695 regardless of the assigned total system uncertainty. However, when more precise collapse metrics are considered for collapse risk assessment of steel frame buildings with perimeter SMFs, a tolerable probability of collapse is only achieved in a return period of 50 years when the perimeter SMFs of mid‐rise steel buildings are designed with a strong‐column/weak‐beam ratio larger than 1.5. The concept of the dynamic overstrength, Ωd is introduced that captures the inelastic force redistribution due to dynamic loading. Steel frame buildings with perimeter SMFs achieve a Ωd > 3 regardless if the gravity framing is considered as part of the nonlinear analytical model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
187.
188.
The shallow alluvial aquifers of the delta plains and flood plains of Bangladesh, comprises about 70% of total land area are mostly affected by elevated concentrations of arsenic (As) in groundwater exposing a population of more than 35 million to As toxicity. Geochemical studies of shallow alluvial aquifer in the Meghna flood plain show that the uppermost yellowish grey sediment is low in As (1.03 mg/kg) compared to the lower dark grey to black sediment (5.24 mg/kg) rich in mica and organic matter. Sequential extraction data show that solid phase As bound to poorly crystalline and amorphous metal (Fe, Mn, Al)-oxyhydroxides is dominant in the grey to dark grey sediment and reaches its maximum level (3.05 mg/kg) in the mica rich layers. Amount of As bound to sulphides and organic matter also peaks in the dark grey to black sediment. Vertical distributions of major elements determined by X-ray fluorescence (XRF) show that iron (Fe2O3), aluminum (Al2O3) and manganese (MnO) follow the general trend of distribution of As in the sediments. Concentrations of As, Mn, Fe, HCO3 , SO4 2− and NO3 in groundwater reflect the redox status of the aquifer and are consistent with solid phase geochemistry. Mineralogical analysis by X-ray diffraction (XRD) and scanning electron microscopy (SEM) fitted with energy dispersive X-ray spectrometer (EDS) revealed dominance of crystalline iron oxides and hydroxides like magnetite, hematite and goethite in the oxidised yellowish grey sediment. Amorphous Fe-oxyhydroxides identified as grain coating in the mica and organic matter rich sediment suggests weathering of biotite is playing a critical role as the source of Fe(III)-oxyhydroxides which in turn act as sink for As. Presence of authigenic pyrite in the dark grey sediment indicates active reduction in the aquifer.  相似文献   
189.
Sediment samples from the coastal zone of the Gulf of Suez contain a variety of organic compounds from anthropogenic and natural sources. A total of 12 surface samples of bottom sediments were collected with an Ekman grab sampler along an off-shore transect south of Ras Abu el-Darag. The samples were extracted with a mixture of dichloromethane and methanol (3:1 v/v) after drying and sieving through 250 μm mesh. The extracts were derivatized and analyzed by gas chromatography–mass spectrometry in order to characterize the chemical composition and sources of the organic components. Marine with minor terrestrial biota were the major natural sources of organic tracers and included n-alkanoic acids, sterols and saccharides (5.7–76.7%). Anthropogenic sources, from petroleum related activities, detergent usage for spill cleaning and littering, are indicated by the presence of n-alkanes with carbon preference index ≤1.0, hopanes, steranes, unresolved complex mixture of branched and cyclic hydrocarbons, alkyl nitriles, alkamides and plasticizers. Their total relative concentrations ranged from 23.3 to 97.3% of the total extracts. Petroleum residues from natural seepage may also be part of these hydrocarbons. The levels of anthropogenic inputs decrease from about 94% in coastal zone sediments to about 20% in sediments from the reef front.  相似文献   
190.
The hydraulic conductivity plays a major role on the excess pore pressure generation during monotonic and cyclic loading of granular soils with fines. This paper aims to determine how much the hydraulic conductivity and pore pressure response of the sand-silt mixtures are affected by the percentage of fines and void ratio of the soil. The results of flexible wall permeameter and undrained monotonic triaxial tests performed on samples reconstituted from Chlef River sand with 0, 10, 20, 30, 40, and 50% nonplastic silt at an effective confining stress of 100 kPa and two relative densities (Dr = 20, and 91%) are presented and discussed. It was found that the pore pressure increases linearly with the increase of the fines content and logarithmically with the increase of the intergranular void ratio. The results obtained from this study reveal that the saturated hydraulic conductivity (k) of the sand mixed with 50% low plastic fines can be, on average, four orders of magnitude smaller than that of the clean sand. The results show also that the hydraulic conductivity decreases hyperbolically with the increase of the fines content and the intergranular void ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号