首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   52篇
  国内免费   6篇
测绘学   36篇
大气科学   32篇
地球物理   154篇
地质学   252篇
海洋学   38篇
天文学   90篇
综合类   1篇
自然地理   43篇
  2024年   3篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   12篇
  2019年   20篇
  2018年   25篇
  2017年   25篇
  2016年   30篇
  2015年   24篇
  2014年   22篇
  2013年   36篇
  2012年   24篇
  2011年   31篇
  2010年   21篇
  2009年   38篇
  2008年   25篇
  2007年   31篇
  2006年   28篇
  2005年   26篇
  2004年   21篇
  2003年   17篇
  2002年   17篇
  2001年   9篇
  2000年   13篇
  1999年   9篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1976年   4篇
  1973年   2篇
  1965年   2篇
  1964年   3篇
排序方式: 共有646条查询结果,搜索用时 78 毫秒
131.
Published strength profiles predict strength discontinuities within and/or at the base of continental crust during compression. We use finite element models to investigate the effect of strength discontinuities on continental collision dynamics. The style of deformation in model crust during continued subduction of underlying mantle lithosphere is controlled by: (1) experimental flow-law data; (2) the crustal geotherm; (3) strain localization by erosion; (4) strain-softening and other localization effects. In the absence of erosion and other factors causing strain localization, numerical models with typical geothermal gradients and frictional/ductile rheologies predict diffuse crustal deformation with whole-scale detachment of crust from mantle lithosphere. This prediction is at odds with earlier model studies that only considered frictional crustal rheologies and showed asymmetric, focused crustal deformation. Without localization, model deformation is not consistent with that observed in small collisional orogens such as the Swiss Alps. This suggests that strain localization by a combination of erosion and rheological effects such as strain softening must play a major role in focusing deformation, and that strength profiles derived under constant strain rates and uniform material properties cannot be used to infer crustal strength during collision dynamics.  相似文献   
132.
Subduction-related Quaternary volcanic rocks from Solander and Little Solander Islands, south of mainland New Zealand, are porphyritic trachyandesites and andesites (58.20–62.19 wt% SiO2) with phenocrysts of amphibole, plagioclase and biotite. The Solander and Little Solander rocks are incompatible element enriched (e.g. Sr ~931–2,270 ppm, Ba ~619–798 ppm, Th ~8.7–21.4 ppm and La ~24.3–97.2 ppm) with MORB-like Sr and Nd isotopic signatures. Isotopically similar quench-textured enclaves reflect mixing with intermediate (basaltic-andesite) magmas. The Solander rocks have geochemical affinities with adakites (e.g. high Sr/Y and low Y), whose origin is often attributed to partial melting of subducted oceanic crust. Solander sits on isotopically distinct continental crust, thus excluding partial melting of the lower crust in the genesis of the magmas. Furthermore, the incompatible element enrichments of the Solander rocks are inconsistent with partial melting of newly underplated mafic lower crust; reproduction of their major element compositions would require unrealistically high degrees of partial melting. A similar argument precludes partial melting of the subducting oceanic crust and the inability to match the observed trace element patterns in the presence of residual garnet or plagioclase. Alternatively, an enriched end member of depleted MORB mantle source is inferred from Sr, Nd and Pb isotopic compositions, trace element enrichments and εHf ? 0 CHUR in detrital zircons, sourced from the volcanics. 10Be and Sr, Nd and Pb isotopic systematics are inconsistent with significant sediment involvement in the source region. The trace element enrichments and MORB-like Sr and Nd isotopic characteristics of the Solander rocks require a strong fractionation mechanism to impart the high incompatible element concentrations and subduction-related (e.g. high LILE/HFSE) geochemical signatures of the Solander magmas. Trace element modelling shows that this can be achieved by very low degrees of melting of a peridotitic source enriched by the addition of a slab-derived melt. Subsequent open-system fractionation, involving a key role for mafic magma recharge, resulted in the evolved andesitic adakites.  相似文献   
133.
In HadGEM2-A, AMIP experiments forced with observed sea surface temperatures respond to uniform and patterned +4 K SST perturbations with strong positive cloud feedbacks in the subtropical stratocumulus/trade cumulus transition regions. Over the subtropical Northeast Pacific at 137°W/26°N, the boundary layer cloud fraction reduces considerably in the AMIP +4 K patterned SST experiment. The near-surface wind speed and the air-sea temperature difference reduces, while the near-surface relative humidity increases. These changes limit the local increase in surface evaporation to just 3 W/m2 or 0.6 %/K. Previous studies have suggested that increases in surface evaporation may be required to maintain maritime boundary layer cloud in a warmer climate. This suggests that the supply of water vapour from surface evaporation may not be increasing enough to maintain the low level cloud fraction in the warmer climate in HadGEM2-A. Sensitivity tests which force the surface evaporation to increase substantially in the +4 K patterned SST experiment result in smaller changes in boundary layer cloud and a weaker cloud feedback in HadGEM2-A, supporting this idea. Although global mean surface evaporation in climate models increases robustly with global temperature (and the resulting increase in atmospheric radiative cooling), local values may increase much less, having a significant impact on cloud feedback. These results suggest a coupling between cloud feedback and the hydrological cycle via changes in the patterns of surface evaporation. A better understanding of both the factors controlling local changes in surface evaporation and the sensitivity of clouds to such changes may be required to understand the reasons for inter-model differences in subtropical cloud feedback.  相似文献   
134.
135.
Abstract— Ordinary and carbonaceous chondrites of the lowest petrologic types were surveyed by X‐ray mapping techniques. A variety of metamorphic effects were noted and subjected to detailed analysis using electron microprobe, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and cathodoluminescence (CL) methods. The distribution of Cr in FeO‐rich olivine systematically changes as metamorphism increases between type 3.0 and type 3.2. Igneous zoning patterns are replaced by complex ones and Cr‐rich coatings develop on all grains. Cr distributions in olivine are controlled by the exsolution of a Cr‐rich phase, probably chromite. Cr in olivine may have been partly present as tetrahedrally coordinated Cr3+. Separation of chromite is nearly complete by petrologic type 3.2. The abundance of chondrules showing an inhomogeneous distribution of alkalis in mesostasis also increases with petrologic type. TEM shows this to be the result of crystallization of albite. Residual glass compositions systematically change during metamorphism, becoming increasingly rich in K. Glass in type I chondrules also gains alkalis during metamorphism. Both types of chondrules were open to an exchange of alkalis with opaque matrix and other chondrules. The matrix in the least metamorphosed chondrites is rich in S and Na. The S is lost from the matrix at the earliest stages of metamorphism due to coalescence of minute grains. Progressive heating also results in the loss of sulfides from chondrule rims and increases sulfide abundances in coarse matrix assemblages as well as inside chondrules. Alkalis initially leave the matrix and enter chondrules during early metamorphism. Feldspar subsequently nucleates in the matrix and Na re‐enters from chondrules. These metamorphic trends can be used to refine classification schemes for chondrites. Cr distributions in olivine are a highly effective tool for assigning petrologic types to the most primitive meteorites and can be used to subdivide types 3.0 and 3.1 into types 3.00 through 3.15. On this basis, the most primitive ordinary chondrite known is Semarkona, although even this meteorite has experienced a small amount of metamorphism. Allan Hills (ALH) A77307 is the least metamorphosed CO chondrite and shares many properties with the ungrouped carbonaceous chondrite Acfer 094. Analytical problems are significant for glasses in type II chondrules, as Na is easily lost during microprobe analysis. As a result, existing schemes for chondrule classification that are based on the alkali content of glasses need to be revised.  相似文献   
136.
137.
Transmission electron microscopy (TEM) was used to study the microtextural and mineralogical characteristics of fine-grained rims in the unbrecciated CM2 chondrites, Y-791198 and ALHA81002, in an effort to provide constraints on the origins of the rims themselves. Our TEM observations show that the rims in Y-791198 are composed of two distinct types of region, sulfide-poor and sulfide-rich, that are intermixed in a complex manner at the micron to submicron level. The sulfide-poor regions are largely composed of amorphous silicate material or nanocrystalline serpentine, but rare fibrous and coarse-grained serpentine grains have also been identified. No fine-grained cronstedtite or tochilinite were observed, although coarse-grained lumps of tochilinite are present in the rims. In contrast, the sulfide-rich regions are characterized by the presence of a myriad, nanometer-sized Fe, Ni sulfide grains (pentlandite with some Ni-rich pyrrhotite) embedded within an amorphous silicate similar in composition to that of the sulfide-poor regions. The sulfide-rich regions also contain rare phases such as olivine, and Fe, Ni metal grains with grain sizes that are always >100 nm in size. Z-contrast scanning transmission electron microscopy (STEM) reveals that the fine-grained rims consist of a mosaic of irregularly-shaped sulfide-poor and sulfide-rich-regions with sizes of about 0.2-0.5 μm, that have been compacted together during parent body lithification. Despite aqueous alteration, the distinct mineralogical characteristics of these different regions are preserved on a fine-scale and probably represent primitive heterogeneity in the dust from which these rims formed.Serpentine is much better developed and more widespread in the fine-grained rims of ALHA81002 than Y-791198. Complex mats of serpentine fibers are commonly found and cronstedtite and tochilinite are plentiful. Anhydrous minerals such as olivine are rare and have usually been replaced by serpentine. Like Y-791198, all the fine-grained rims studied in ALHA81002 show the same mineral assemblages and textural characteristics throughout and between rims. The homogeneity of the mineralogy, textural relationships and degree of hydration in the rims of these two chondrites is more consistent with parent-body alteration than with pre-accretionary alteration.  相似文献   
138.
This article focuses on the relationships between the large‐scale stratigraphic architecture of the Almazán basin infill and the sedimentation rates (SR) calculated for precise time intervals. Our aim was to improve the understanding of the timing and causes of the architectural changes, their significance in terms of accommodation space and sediment supply and their relationship with climate and tectonics. The study area includes the Gómara fluvial fan, the main sediment transfer system of the Almazán basin during Paleogene times. Its large‐scale architecture shifted through time between a stacking pattern of low density ribbon‐like and high density sheet‐like channel fills. Laterally to the fluvial system, mudstone and evaporitic mudstone units represented evaporitic mudflats which passed laterally into palustrine/lacustrine limestone units interpreted as lakes and ponds. Stacked calcretes occurred in distal alluvial and distal floodplain settings. A magnetostratigraphy encompassing 2600 m guided by available fossil mammal biochronology has provided a temporal framework that spans the complete Paleogene infill of the basin, from Late Lutetian to Late Oligocene, filling a gap in the Cenozoic chronostratigraphy of Spanish basins. This permits to constrain the kinematics of the structures both in the basin and in its margins, and to provide the timing for the depositional sequences. These data, combined with a magnetostratigraphic map, where magnetic reversals were traced through the Gómara monocline, allow a detailed analysis of the SR variability across the fluvial system and its adjacent depositional environments. The results show that high sedimentation rates (around 30–40 cm kyr?1) are related to fluvial environments with low density ribbon‐shaped channels, while low SR (around or below 10 cm kyr?1) are related to high density sheet‐like channels. Laterally, mud dominated environments with high SR (15–20 cm kyr?1) grade into palustrine/lacustrine carbonated environments with low SR (around 9 cm ky?1). The lowest SR (about 3 cm kyr?1) are related to the development of stacked calcrete profiles in distal floodplain and in the connection of distal alluvial and palustrine/lacustrine units.  相似文献   
139.
ABSTRACT

Rooted in the philosophy of point- and segment-based approaches for transportation mode segmentation of trajectories, the measures that researchers have adopted to evaluate the quality of the results (1) are incomparable across approaches, hence slowing the progress in the field and (2) do not provide insight about the quality of the continuous transportation mode segmentation. To address these problems, this paper proposes new error measures that can be applied to measure how well a continuous transportation mode segmentation model performs. The error measures introduced are based on aligning multiple inferred continuous intervals to ground truth intervals, and measure the cardinality of the alignment and the spatial and temporal discrepancy between the corresponding aligned segments. The utility of this new way of computing errors is shown by evaluating the segmentation of three generic transportation mode segmentation approaches (implicit, explicit–holistic, and explicit–consensus-based transport mode segmentation), which can be implemented in a thick client architecture. Empirical evaluations on a large real-word data set reveal the superiority of explicit–consensus-based transport mode segmentation, which can be attributed to the explicit modeling of segments and transitions, which allows for a meaningful decomposition of the complex learning task.  相似文献   
140.
The Salar de Atacama forms one of a series of forearc basins developed along the western flank of the Central Andes. Exposed along the northwest margin of the basin, a salt‐cored range, the Cordillera de la Sal, records the Mid‐Miocene to recent sedimentological and structural development of this basin. Sediments of the Mid‐Miocene Vilama Formation record the complex interaction between regional/local climate change, halokinesis and compressional deformation. This study reveals how these factors have controlled the facies development and distribution within the Salar de Atacama. Detailed sedimentary logging, cross‐sections and present day geomorphology through the northern Cordillera de la Sal have been used to establish a lithostratigraphy, chronostratigraphy and the regional distribution of the Vilama Formation. The Vilama Formation documents an increase in aridity with a hiatus in sedimentation from Mid‐Miocene to 9 Ma with initial uplift of the Cordillera de la Sal. From 9 Ma to 8.5 Ma deposition of a meandering fluvial system is recorded followed by a rapid decrease in sedimentation till 6 Ma. From 6 to 2 Ma, the deposition of extensive palustrine carbonates and distal alluvial–mudflat–lacustrine demonstrates the existence of an extensive lake within the Salar de Atacama. Post 2 Ma, the lake decreased in size and braided alluvial gravels associated with alluvial fans were widespread through the region suggesting a final shift to hyperarid conditions. By comparing the Vilama Formation with similar age facies throughout northern Chile and southern Peru, several shifts in climate are recognized. Climate signatures within northern Chile appear to be largely diachronous with the last regional event in the Mid‐Miocene. Since that time, humid events have been restricted to either Precordillerian basins or the Central Atacama. Within the Central Atacama, the final switch to hyperarid conditions was not till the earliest Pleistocene, much later than previously estimated within the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号