首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   9篇
  国内免费   1篇
测绘学   4篇
大气科学   8篇
地球物理   39篇
地质学   69篇
海洋学   25篇
天文学   64篇
自然地理   12篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   19篇
  2008年   12篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   11篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   8篇
  1998年   7篇
  1996年   2篇
  1995年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1966年   2篇
  1965年   1篇
  1964年   1篇
排序方式: 共有221条查询结果,搜索用时 93 毫秒
201.
Active sonar detection in shallow water using the Page test   总被引:1,自引:0,他引:1  
The use of active sonar in shallow water results in received echoes that may be considerably spread in time compared to the resolution of the transmitted waveform. The duration and structure of the spreading and the time of occurrence of the received echo are unknown without accurate knowledge of the environment and a priori information on the location and reflection properties of the target. A sequential detector based on the Page test is proposed for the detection of time-spread active sonar echoes. The detector also provides estimates of the starting and stopping times of the received echo. This signal segmentation is crucial to allow further processing such as more accurate range and bearing localization, depth localization, or classification. The detector is designed to exploit the time spreading of the received echo and is tuned as a function of range to the expected signal-to-noise ratio (SNR) as determined by the transmitted signal power, transmission loss, approximate target strength, and the estimated noise background level. The theoretical false alarm and detection performance of the proposed detector, the standard Page test, and the conventional thresholded matched filter detector are compared as a function of range, echo duration, SNR, and the mismatch between the actual and assumed SNR. The proposed detector and the standard Page test are seen to perform better than the conventional thresholded matched filter detector as soon as the received echo is minimally spread in time. The use of the proposed detector and the standard Page test in active sonar is illustrated with reverberation data containing target-like echoes from geological features, where it was seen that the proposed detector was able to suppress reverberation generated false alarms that were detected by the standard Page test  相似文献   
202.
Coupling of the C–N–P biogeochemical cycles is effected by the dependence of the land and aquatic primary producers on the availability of N and P. In general, the Redfield ratios C:P and N:P in the reservoirs supplying nutrients for primary production on land, in the oceanic coastal zone, and in the surface ocean differ from these ratios in the land phytomass and aquatic plankton. When N:P in the source is higher than in primary producers, this results in a potential accumulation of some excess nitrogen in soil water and coastal water, and increased denitrification flux to the atmosphere. The oceanic coastal zone plays an important role in the coupled C–N–P cycles and their dynamics because of its intermediate position between the land and oceanic reservoirs. These coupled cycles were analyzed for the last 300 years of exposure to four human-generated forcings (fossil fuel emissions, land use change, chemical fertilization of land, and sewage discharge to the coastal zone) and global temperature rise. In the period from 1700 to 2000, there has been a net loss of C, N, and P primarily from the land phytomass and soil humus, despite the rise in atmospheric CO2, increased recycling of nutrients from humus, chemical fertilization, and re-growth of forests on previously disturbed land. The main mechanisms responsible for the net loss were increased riverine transport to the coastal zone of dissolved and particulate materials and, for N, increased denitrification on land. The oceanic coastal zone gained N and P, resulting in their accumulation in the organic pool of living biomass and dissolved and reactive particulates, as well as in their accumulation in coastal sediments from land-derived and in situ produced organic matter. Pronounced shifts in the rates and directions of change in some of the major land reservoirs occurred near the mid-1900s. Denitrification removes N from the pool available for primary production. It is the strongest on land, accounting for 73–83% of N removal from land by the combined mechanisms of denitrification and riverine export.  相似文献   
203.
Small volumes (in the cm3 range) of a talc-kyanite schist exhibit mosaic equilibria characterized by mineral assemblages conventionally attributed to vastly different pressure temperature conditions of metamorphism. On the basis of petrographic and microprobe studies these assemblages are attributed to three consecutive stages of metamorphism of a chemically exceptional rock composition falling largely into the model system MgO-Al2O3-SiO2-H2O. Stage 1 typified by Mg chlorite-quartz-talc and some paragonite was followed during stage 2 by talc-kyanite, Mg gedrite-quartz, and the growth of large dravites. In stage 3 pure Mg cordierite formed with or without corundum and/or talc, and kyanite was partly converted into sillimanite. Pressures and temperature during this final stage of metamorphism were probably near 5–6 kb, 640 ° C. The preservation of this succession of mineral assemblages related to each other through isochemical reactions suggests that the main factors governing the metamorphic history of this whitheschist were compositional changes of the coexisting fluids with time, whereas pressure temperature variations may be subordinate. In the Sar e Sang area such chemical variations of the metamorphic fluids are probably caused by progressive metamorphism and mobilization of a former evaporite deposit. Microprobe analyses of the phases gedrite and talc indicate variable degrees of sodium incorporation into these phases according to the substitution NaAl→Si.  相似文献   
204.
The steady-state response is determined of elastic layered media to buried moving normal point loads. The exact solution appears as a superposition of infinitely many rays, each of them given in closed form, in terms of algebraic functions. The solution obtained yields a local behaviour corresponding to the unbounded-space solution. The unbounded-space problem was previously solved byEason, Fulton andSneddon [8] and their solution is utilized for the present solution by superposing it on secondary fields so as to satisfy the boundary conditions. The secondary fields are obtained by the method of the differential transferm described below.  相似文献   
205.
206.
207.
208.
209.
Groundwater extraction is rampant in many developing countries and urban areas whereas the natural recharge is decreasing due to covering of Earth's surface for various developmental activities. This leads to declining levels of groundwater and deterioration in groundwater quality. Artificial recharge with rain water harvesting techniques offers an excellent scope to arrest this degradation. This paper presents a study that analyzes the influence of rain water harvesting (RWH) on groundwater storage and quality. Chennai City, India is selected as study area, as major RWH implementation has taken place during 2002–2003 due to Government legislation. Preliminary analysis of groundwater levels were done spatially and temporally. Groundwater table contours were drawn using the GIS software for pre‐ (1999–2000) and post‐RWH (2009–2010) periods. The groundwater levels follow a decreasing trend before implementation of RWH where as a positive increasing trend takes place after construction of RWH structures. “Groundwater Estimation Committee (GEC)” norms of Government of India were used to estimate the change in storage during pre‐ and post‐RWH periods, which are found to be 1.76 × 106 and 32.77 × 106 m3, respectively. The results show that the implementation of RWH has increased the groundwater storage considerably. Also, the influence of RWH on groundwater quality is found to be encouraging in some parts of the studied area.  相似文献   
210.
Electricals and electronic equipments that have reached its utilization period are disposed by the consumer are considered as e-waste. The categories of e-waste range from household appliances to machines used in offices and consumer goods. The rise in problem is due to scarcity of proper place for disposing the e-wastes. Hence, the wastes are disposed in open landfills by the consumers which lead to direct reaction of the e-waste with the environment. The release of harmful toxins and chemicals by the e-wastes causes hazardous effects on living beings. Several processes are introduced in recycling and recovering the harmful metals present in the electronic equipments. The most important reasons for e-waste recycling are waste removal as well as recovery of valuable materials present in the waste. Developed countries such as USA and UK follow some strict rules and regulations about managing the increasing amount of e-wastes, whereas India still needs to have a rigid law for the e-waste management. Prior recycling and recovering the important metals from electronic wastes, it is crucial to ascertain the amount of the metal present in the e-waste. Plastics followed by metals are the main components found in electronic wastes. Hazardous metals such as copper, lead and cadmium are predominant in almost all kinds of e-wastes. Determination of the components present in the electronic wastes guides for the proper path to be followed for recovering the components from the wastes. The review deals with status of e-waste across the world and methods of recovery and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号