Tracking spatial and temporal trends of events (e.g. disease outbreaks and natural disasters) is important for situation awareness and timely response. Social media, with increasing popularity, provide an effective way to collect event-related data from massive populations and thus a significant opportunity to dynamically monitor events as they emerge and evolve. While existing research has demonstrated the value of social media as sensors in event detection, estimating potential time spans and influenced areas of an event from social media remains challenging. Challenges include the unstable volumes of available data, the spatial heterogeneity of event activities and social media data, and the data sparsity. This paper describes a systematic approach to detecting potential spatiotemporal patterns of events by resolving these challenges through several interrelated strategies: using kernel density estimation for smoothed social media intensity surfaces; utilizing event-unrelated social media posts to help map relative event prevalence; and normalizing event indicators based on historical fluctuation. This approach generates event indicator maps and significance maps explaining spatiotemporal variations of event prevalence to identify space-time regions with potentially abnormal event activities. The approach has been applied to detect influenza activity patterns in the conterminous US using Twitter data. A set of experiments demonstrated that our approach produces high-resolution influenza activity maps that could be explained by available ground truth data. 相似文献
Acta Geotechnica - The identification of contaminated soils has gained increasing interest over the decades in the geoenvironmental issues. In this study, a probabilistic method based on the... 相似文献
Abstract— The petrogenesis of four lunar highlands meteorites, Dhofar 025 (Dho 025), Dhofar 081 (Dho 081), Dar al Gani 262 (DaG 262), and Dar al Gani 400 (DaG 400) were studied. For Dho 025, measured oxygen isotopic values and Fe‐Mn ratios for mafic minerals provide corroboratory evidence that it originated on the Moon. Similarly, Fe‐Mn ratios in the mafic minerals of Dho 081 indicate lunar origin. Lithologies in Dho 025 and Dho 081 include lithic clasts, granulites, and mineral fragments. A large number of lithic clasts have plagioclase AN# and coexisting mafic mineral Mg# that plot within the “gap” separating ferroan anorthosite suite (FAN) and high‐magnesium suite (HMS) rocks. This is consistent with whole rock Ti‐Sm ratios for Dho 025, Dho 081, and DaG 262, which are also intermediate compared to FAN and HMS lithologies. Although ion microprobe analyses performed on Dho 025, Dho 081, DaG 262, and DaG 400 clasts and minerals show far stronger FAN affinities than whole rock data suggest, most clasts indicate admixture of ≤12% HMS component based on geochemical modeling. In addition, coexisting plagioclase‐pyroxene REE concentration ratios in several clasts were compared to experimentally determined plagioclase‐pyroxene REE distribution coefficient ratios. Two Dho 025 clasts have concordant plagioclase‐pyroxene profiles, indicating that equilibrium between these minerals has been sustained despite shock metamorphism. One clast has an intermediate FAN‐HMS composition. These lunar meteorites appear to represent a type of highland terrain that differs substantially from the KREEP‐signatured impact breccias that dominate the lunar database. From remote sensing data, it is inferred that the lunar far side appears to have appropriate geochemical signatures and lithologies to be the source regions for these rocks; although, the near side cannot be completely excluded as a possibility. If these rocks are, indeed, from the far side, their geochemical characteristics may have far‐reaching implications for our current scientific understanding of the Moon. 相似文献
Super Typhoon Haiyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan were analyzed by using the lightning data from the World Wide Lightning Location Network, typhoon intensity and position data from the China Meteorological Administration, and horizontal wind data from the ECMWF. Three distinct regions were identified in the spatial distribution of daily average lightning density, with the maxima in the inner core and the minima in the inner rainband. The lightning density in the intensifying stage of Haiyan was greater than that in its weakening stage. During the time when the typhoon intensity measured with maximum sustained wind speed was between 32.7 and 41.4 ms?1, the storm had the largest lightning density in the inner core, compared with other intensity stages. In contrast to earlier typhoon studies, the eyewall lightning burst out three times. The first two eyewall lightning outbreaks occurred during the period of rapid intensification and before the maximum intensity of the storm, suggesting that the eyewall lightning activity could be used to identify the change in tropical cyclone intensity. The flashes frequently occurred in the inner core, and in the outer rainbands with the black body temperature below 220 K. Combined with the ECMWF wind data, the influences of vertical wind shear (VWS) on the azimuthal distribution of flashes were also analyzed, showing that strong VWS produced downshear left asymmetry of lightning activity in the inner core and downshear right asymmetry in the rainbands. 相似文献
This paper deals with the processes operating on the beaches of Goa, interpreted from imagery, followed by ground-truth collection and field checks. Studies on Landsat imagery bring out two distinct coastal geomorphological features, one north and the other south of Vasco-da-Gama. The beaches to the south indicate the prograding shoreline with deposition being the dominant phenomenon. The beaches to the north of Vasco-da-Gama reveal a retrograding shoreline where erosion is dominant. The presence of chimneys and stacks to the north of Vasco-da-Gama are characteristic of intensive erosional action while to the south a wide regular beach backed by a palaeo-strand line points to deposition. The pattern of the sediment load (in Band 4) is used as an index of longshore current movement. The action of erosion as against that of deposition in the two regions can be surmised from the diffused pattern vis-a-vis the uniformly wide even tone. Sand samples from the northern portion give a sorting coefficient of 1.100 while the southern portion shows a value of 0.712. It is hypothesised that the promontory on which Vasco-da-Gama lies is responsible for the formation of two different geomorphic zones. 相似文献
Extensive field investigations were carried out for the first time in the meizoseismal area of the great 1950 Assam Earthquake aimed at exploring the paleoseismic history of the NE Indian region through documentation of liquefaction features and radiocarbon (14C) dating. Trenching at more than a dozen locations along the Burhi Dihing River valley and within the alluvial fans adjoining the Brahmaputra and Dibang Rivers resulted in the identification of more than a dozen very prominent liquefaction features (sand dykes, sills, sand blows etc.) as evidences of large to great earthquakes. 14C dating of the organic material associated with some of the features indicates a paleoseismic record of about 500 yrs archived by the sediments in this region. Compelling geological evidence(s) of the great 1950 earthquake are well constrained by 14C dating. Out of the two historically reported seismic events (1548 AD and 1697 AD) from this region, 14C dating could constrain the 1548 AD event though not distinctly. Further studies using combined 14C and OSL dating may better constrain the seismo-chronology of the study region. 相似文献
The paper contributes to the growing literature highlighting the significance of assessing risk and vulnerability, micro-level perceptions and adaptation decision-making in building resilience of farm communities to climate change in dryland region of India. To select a region for grassroots enquiry, spatial differential in risk to climate change was assessed in Rajasthan, using IPCC AR5 framework. Among the highly vulnerable and risky districts, Bikaner district was selected for elicitation of micro-level imperatives. Rising atmospheric temperature, inter-seasonal displacements of rainfall and recurrence of extreme events were perceived by the farmers resulting in resource degradation, production risks and erosion of households’ socio-economic dynamics. As risk preventive measures, suitable adjustment in agricultural practices, natural resource management, shift to off-farm activities and other relief measures were adopted by the farmers. Farmer’s choice of adaptation was influenced by several climatic, socio-economic and infrastructural & institutional factors in varying degree. Moreover, several financial, economic, infrastructural and informational bottlenecks to adaptations were reported during household survey and FGDs. The results suggest that capturing grassroots evidence is crucial for directing locally tailored adaptation strategies, along with the improving deficiencies in the developmental pathways for climate-resilient agriculture.
As the demand of exploitation and utilization of geothermal energy increases, more geothermal-related earth structures occur recently. The design of the structures depends upon an accurate prediction of soil thermal conductivity. The existing soil thermal conductivity models were mostly developed by empirical fits to datasets of soil thermal conductivity measurements. Due to the gaps in measured thermal conductivities between any two tested natural soils, the models may not provide accurate prediction for other soils, and the predicted thermal conductivity might not be continuous over the entire range of soil type. In this research, a generalized soil thermal conductivity model was proposed based on a series of laboratory experiments on sand, kaolin clay and sand–kaolin clay mixtures using a newly designed thermo-time domain reflectometry probe. The model was then validated with respect to kdry–n (thermal conductivity of dry soils and porosity) and kr–Sr (normalized thermal conductivity and degree of saturation) relationships by comparing with previous experimental studies. The predicted thermal conductivities were found to be in a good agreement with the experimental data collected from both this study and the other literatures with at least 85% confidence interval. It is concluded that the proposed model accounts for the effects of both environmental factors (i.e., moisture content and dry density) and compositional factors (i.e., quartz content and soil type) on soil thermal conductivity, and it has a great potential in predicting soil thermal conductivity more accurately for geothermal applications. 相似文献
Acta Geotechnica - The seismic response of a highly heterogeneous hydraulic fill dam was evaluated by studying the natural frequencies of the first and second modes of vibration and analyzing the... 相似文献