首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   1篇
测绘学   1篇
大气科学   1篇
地球物理   9篇
地质学   66篇
海洋学   11篇
自然地理   5篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
71.
Harmful algae and mariculture in New Zealand   总被引:3,自引:0,他引:3  
  相似文献   
72.
73.
This study investigates the δ13C values of Middle Miocene–Modern drift deposits and periplatform sediments in the Maldives and compares these data with the global δ13C values derived from bulk oceanic sediments and foraminifera. This comparison reveals that while the δ13C values of the early Miocene periplatform sediments in the Maldives appear to track the global record of δ13C values, including increases associated with the Oligocene–Miocene boundary as well as the variations within the Monterey Event, the correlation with the Monterey Event may be coincidental. It is suggested that variations in δ13C values do not reflect changes in oceanic dissolved inorganic carbon, but instead pulses of sediment arising from platform progradation that contribute carbonates with elevated δ13C values derived from the adjacent shallow‐water atolls. This conclusion is supported both by correlations between the seismic sequence architecture and the δ13C values which document progradation of 13C‐rich platform sediments, and also by the continuation of the interval of 13C‐rich sediments past the end of the Monterey Event at 13 Ma within the drift.  相似文献   
74.
75.
Fluvial effects on nutrient and phytoplankton dynamics were evaluated in southern Kaneohe Bay, Oahu, Hawaii. Fluvial inputs occurred as small, steady baseflows interrupted by intense pulses of storm runoff. Baseflow river inputs only affected restricted areas around stream mouths, but the five storm events sampled during this study produced transient runoff plumes of much greater spatial extent. Nutrient loading via runoff generally led to an increase of the phytoplankton biomass and gross primary productivity in southern Kaneohe Bay, but the rapid depletion of nutrients resulted in a decline of the algal populations in the relatively short time of days. Under baseline conditions, water column primary productivity in southern Kaneohe Bay is normally nitrogen limited. Following storm events, the high ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN:DIP, 25–29) fluxes of runoff nutrients drove bay waters towards phosphorus limitation. A depletion of phosphate relative to DIN in surface waters was observed following all storm events. Due to high flushing rates, recovery times of bay waters from storm perturbations ranged from 3 to 8 d and appeared to be correlated with tidal range. Storm inputs have a significant effect on the water column ecosystem and biogeochemistry in southern Kaneohe Bay. The perturbations were only transient events and the system rapidly recovered to prestorm conditions.  相似文献   
76.
The ‘dolomite problem’ has a long history and remains one of the most intensely studied and debated topics in geology. Major amounts of dolomite are not directly forming today from seawater. This observation has led many investigators to develop geochemical/hydrologic models for dolomite formation in diagenetic environments. A fundamental limitation of the current models for the growth of sedimentary dolomite is the dearth of kinetic information for this phase, in contrast to that available for calcite and aragonite. We present a simple kinetic model describing dolomite growth as a function of supersaturation using data from published high temperature synthesis experiments and our own experimental results. This model is similar in form to empirical models used to describe precipitation and dissolution rates of other carbonate minerals. Despite the considerable uncertainties and assumptions implicit in this approach, the model satisfies a basic expectation of classical precipitation theory, i.e., that the distance from equilibrium is a basic driving force for reaction rate. The calculated reaction order is high (~ 3), and the combined effect of high order and large activation energy produces a very strong dependence of the rate on temperature and the degree of supersaturation of aqueous solutions with respect to this phase. Using the calculated parameters, we applied the model to well-documented case studies of sabkha dolomite at Abu Dhabi (Persian Gulf), and organogenic dolomite from the Gulf of California. Growth rates calculated from the model agree with independent estimates of the age of these dolomites to well within an order of magnitude. A comparison of precipitation rates in seawater also shows the rate of dolomite precipitation to converge strongly with that of calcite with increasing temperature. If correct, this result implies that dolomite may respond to relatively modest warming of surface environments by substantial increases in accumulation rate, and suggests that the distribution of sedimentary dolomite in the rock record may be to some extent a temperature signal.  相似文献   
77.
Dolomite Controls on Phanerozoic Seawater Chemistry   总被引:1,自引:0,他引:1  
We investigate the potential role of dolomite as a long-term buffer on Phanerozoic seawater composition. Using a comprehensive model of Phanerozoic geochemical cycling, we show how variations in the formation rate of sedimentary marine dolomite have buffered seawater saturation state. The total inventory of inorganic carbon reflects the sum of fluxes derived from continental weathering, basalt-seawater exchange, alumino-silicate diagenesis (reverse weathering), and global deposition of calcium carbonate. Although these fluxes are approximately balanced, model results indicate that seawater saturation state is sensitive to the marine dolomite depositional flux. This conclusion is consistent with and constrained by independent proxy data for seawater ion ratios, paleo-atmospheric CO2 concentrations, and paleo-pH data, and dolomite mass-age distribution through Phanerozoic time. Abundant research indicates that dolomite’s occurrence in marine sediments is sensitive to many factors: temperature, seawater composition, paleogeographic setting, continental organization, etc. Although the complexity of the process of dolomite formation prevents a complete understanding of the relative role of these factors, our model results clearly underscore the importance of this mineral in the chemical history of Phanerozoic seawater.  相似文献   
78.
Using coupled terrestrial and coastal zone models, we investigated the impacts of deglaciation and anthropogenic inputs on the CO2–H2O–CaCO3 system in global coastal ocean waters from the Last Glacial Maximum (LGM: 18,000 year BP) to the year 2100. With rising sea level and atmospheric CO2, the carbonate system of coastal ocean water changed significantly. We find that 6 × 1012 metric tons of carbon were emitted from the coastal ocean, growing due to the sea level rise, from the LGM to late preindustrial time (1700 AD) because of net heterotrophy and calcification processes. This carbon came to reside in the atmosphere and in the growing vegetation on land and in uptake of atmospheric CO2 through the weathering of rocks on land. It appears that carbonate accumulation, mainly, but not exclusively, in coral reefs from the LGM to late preindustrial time could account for about 24 ppmv of the 100 ppmv rise in atmospheric CO2, lending some support to the “coral reef hypothesis”. In addition, the global coastal ocean is now, or soon will be, a sink of atmospheric CO2. The temperature rise of 4–5°C since the LGM led to increased weathering rates of inorganic and organic materials on land and enhanced riverine fluxes of total C, N, and P to the coastal ocean of 68%, 108%, and 97%, respectively, from the LGM to late preindustrial time. During the Anthropocene, these trends have been exacerbated owing to rising atmospheric CO2, due to fossil fuel combustion and land-use practices, other human activities, and rising global temperatures. River fluxes of total reactive C, N, and P are projected to increase from late preindustrial time to the year 2100 by 150%, 380%, and 257%, respectively, modifying significantly the behavior of these element cycles in the coastal ocean, particularly in proximal environments. Despite the fact that the global shoal water carbonate mass has grown extensively since the LGM, the pHT (pH values on the total proton scale) of global coastal waters has decreased from ~8.35 to ~8.18 and the carbonate ion concentration declined by ~19% from the LGM to late preindustrial time. The latter represents a rate of decline of about 0.028 μmol CO3 2? per decade. In comparison, the decrease in coastal water pHT from the year 1900 to 2000 was about 8.18–8.08 and is projected to decrease further from about 8.08 to 7.85 between 2000 and 2100, according to the IS92a business-as-usual scenario of CO2 emissions. Over these 200 years, the carbonate ion concentration will fall by ~120 μmol kg?1 or 6 μmol kg?1 per decade. This decadal rate of decline of the carbonate ion concentration in the Anthropocene is 214 times the average rate of decline for the entire Holocene. Hence, when viewed against the millennial to several millennial timescale of geologic change in the coastal ocean marine carbon system, one can easily appreciate why ocean acidification is the “other CO2 problem”.  相似文献   
79.
The dolomite problem has a long history and remains one of the most intensely studied and debated topics in geology. Major amounts of dolomite are not directly forming today from seawater. This observation has led many investigators to develop geochemical/hydrologic models for dolomite formation in diagenetic environments. A fundamental limitation of the current models for the growth of sedimentary dolomite is the dearth of kinetic information for this phase, in contrast to that available for calcite and aragonite.We present a simple kinetic model describing dolomite growth as a function of supersaturation using data from published high temperature synthesis experiments and our own experimental results. This model is similar in form to empirical models used to describe precipitation and dissolution rates of other carbonate minerals. Despite the considerable uncertainties and assumptions implicit in this approach, the model satisfies a basic expectation of classical precipitation theory, i.e., that the distance from equilibrium is a basic driving force for reaction rate. The calculated reaction order is high (~ 3), and the combined effect of high order and large activation energy produces a very strong dependence of the rate on temperature and the degree of supersaturation of aqueous solutions with respect to this phase.Using the calculated parameters, we applied the model to well-documented case studies of sabkha dolomite at Abu Dhabi (Persian Gulf), and organogenic dolomite from the Gulf of California. Growth rates calculated from the model agree with independent estimates of the age of these dolomites to well within an order of magnitude. A comparison of precipitation rates in seawater also shows the rate of dolomite precipitation to converge strongly with that of calcite with increasing temperature. If correct, this result implies that dolomite may respond to relatively modest warming of surface environments by substantial increases in accumulation rate, and suggests that the distribution of sedimentary dolomite in the rock record may be to some extent a temperature signal.  相似文献   
80.
The present analysis adjusts previous estimates of global ocean CaCO3 production rates substantially upward, to 133 × 1012 mol yr?1 plankton production and 42 × 1012 mol yr?1 shelf benthos production. The plankton adjustment is consistent with recent satellite-based estimates; the benthos adjustment includes primarily an upward adjustment of CaCO3 production on so-called carbonate-poor sedimentary shelves and secondarily pays greater attention to high CaCO3 mass (calcimass) and turnover of shelf communities on temperate and polar shelves. Estimated CaCO3 sediment accumulation rates remain about the same as they have been for some years: ~20 × 1012 mol yr?1 on shelves and 11 × 1012 mol yr?1 in the deep ocean. The differences between production and accumulation of calcareous materials call for dissolution of ~22 × 1012 mol yr?1 (~50 %) of shelf benthonic carbonate production and 122 × 1012 mol yr?1 (>90 %) of planktonic production. Most CaCO3 production, whether planktonic or benthonic, is assumed to take place in water depths of <100 m, while most dissolution is assumed to occur below this depth. The molar ratio of CO2 release to CaCO3 precipitation (CO2↑/CaCO3↓) is <1.0 and varies with depth. This ratio, Ψ, is presently about 0.66 in surface seawater and 0.85 in ocean waters deeper than about 1000 m. The net flux of CO2 associated with CaCO3 reactions in the global ocean in late preindustrial time is estimated to be an apparent influx from the atmosphere to the ocean, of +7 × 1012 mol C yr?1, at a time scale of 102–103 years. The CaCO3-mediated influx of CO2 is approximately offset by CO2 release from organic C oxidation in the water column. Continuing ocean acidification will have effects on CaCO3 and organic C metabolic responses to the oceanic inorganic C cycle, although those responses remain poorly quantified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号