首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124081篇
  免费   1841篇
  国内免费   825篇
测绘学   3047篇
大气科学   8282篇
地球物理   23845篇
地质学   45997篇
海洋学   10631篇
天文学   27856篇
综合类   408篇
自然地理   6681篇
  2022年   718篇
  2021年   1224篇
  2020年   1326篇
  2019年   1448篇
  2018年   4581篇
  2017年   4165篇
  2016年   4137篇
  2015年   1830篇
  2014年   3294篇
  2013年   5872篇
  2012年   4110篇
  2011年   6118篇
  2010年   5402篇
  2009年   6761篇
  2008年   5772篇
  2007年   6174篇
  2006年   4504篇
  2005年   3475篇
  2004年   3413篇
  2003年   3254篇
  2002年   3151篇
  2001年   2605篇
  2000年   2552篇
  1999年   2048篇
  1998年   2140篇
  1997年   1980篇
  1996年   1720篇
  1995年   1722篇
  1994年   1475篇
  1993年   1379篇
  1992年   1293篇
  1991年   1328篇
  1990年   1338篇
  1989年   1185篇
  1988年   1087篇
  1987年   1293篇
  1986年   1118篇
  1985年   1396篇
  1984年   1589篇
  1983年   1515篇
  1982年   1377篇
  1981年   1344篇
  1980年   1189篇
  1979年   1102篇
  1978年   1083篇
  1977年   953篇
  1976年   955篇
  1975年   926篇
  1974年   896篇
  1973年   990篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Thirty-four silicate and oxide inclusions large enough for in situ WDS electron microprobe analysis were exposed by grinding/polishing of 19 diamonds from the Kelsey Lake Mine in the Colorado-Wyoming State Line Kimberlite district. Eighteen olivines, seven Cr-pyropes, four Mg-chromites, and one orthopyroxene in 15 stones belong to the peridotite (P) suite and three garnets and one omphacite in three stones belong to the eclogite (E) suite. The fact that this suite is dominated by the peridotite population is in stark contrast to the other diamond suites studied in the State Line district (Sloan, George Creek), which are overwhelmingly eclogitic. Kelsey Lake olivine inclusions are magnesian (17 of 18 grains in 9 stones are in the range Fo 92.7-93.1), typical of harzburgitic P-suite stones worldwide, but unlike the more Fe-rich (lherzolitic) Sloan olivine suite. Mg-chromites (wt% MgO = 12.8-13.8; wt% Cr2O3 = 61.4-66.6) are in the lower MgO range of diamond inclusion chromites worldwide. Seven harzburgitic Cr-pyropes in five stones have moderately low calcium contents (wt% CaO = 3.3-4.3) but are very Cr-rich (wt% Cr2O3 = 9.7-16.7). A few stones have been analyzed by SIMS for carbon isotope composition and nitrogen abundance. One peridotitic stone is apparently homogeneous in carbon isotope composition (δ13CPDB = −6.2‰) but with variable nitrogen abundance (1296-2550 ppm). Carbon isotopes in eclogitic stones range from “normal” for the upper mantle (δ13CPDB = −5.5‰) to somewhat low (δ13CPDB = −10.2‰), with little internal variation in individual stones (maximum difference is 3.6‰). Nitrogen contents (2-779 ppm) are lower than in the peridotitic stone, and are lower in cores than in rims. As, worldwide, harzburgite-suite diamonds have been shown to have formed in Archean time, we suggest that the Kelsey Lake diamond population was derived from a block of Archean lithosphere that, at the time of kimberlite eruption, existed beneath the Proterozoic Yavapai province. The mixed diamond inclusion populations from the State Line kimberlites appear to support models in which volumes of Wyoming Craton Archean mantle survive buried beneath Proterozoic continental crust. Such material may be mixed with eclogitic/lherzolitic regimes emplaced beneath or intermingled with the Archean rocks by Proterozoic subduction.  相似文献   
922.
Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation , sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.  相似文献   
923.
Annually laminated carbonates, known as tufas, commonly develop in limestone areas and typically record seasonal patterns of oxygen- and carbon-isotope compositions. δ18O values are principally controlled by seasonal changes of water temperature, whereas δ13C values are the result of complex reactions among the gaseous, liquid, and solid sources of carbon in the system. We examined the processes that cause the seasonal patterns of δ13C in groundwater systems at three tufa-depositing sites in southwestern Japan by applying model calculations to geochemical data. Underground inorganic carbon species are exchanged with gaseous CO2, which is mainly introduced to the underground hydrological system by natural atmospheric ventilation and by diffusion of soil air. These processes control the seasonal pattern of δ13C, which is low in summer and high in winter. Among the three sites we investigated, we identified two extreme cases of the degree of carbon exchange between liquid and gaseous phases. For the case with high radiocarbon composition (Δ14C) and low pCO2, there was substantial carbon exchange because of a large contribution of atmospheric CO2 and a small water mass. For the other extreme case, which was characterized by low Δ14C and high pCO2, the contribution of atmospheric CO2 was small and the water mass was relatively large. Our results suggest that at two of the three sites water residence time within the soil profile was longer than 1 year. Our results also suggested a short residence time (less than 1 year) of water in the soil profile at the site with the smallest water mass, which is consistent with large seasonal amplitude of the springwater temperature variations. The Δ14C value of tufas is closely related to the hydrological conditions in which they are deposited. If the initial Δ14C value of a tufa-depositing system is stable, 14C-chronology can be used to date paleo-tufas.  相似文献   
924.
Time-dependent sorption and desorption of Cd on calcite was studied over 210 days utilizing 109Cd as a tracer to distinguish between ‘labile’ and ‘non-labile’ forms of sorbed Cd. Stabilizing the calcite suspensions for 12 months under atmospheric PCO2 and controlled temperature was necessary to reliably follow Cd dynamics following initial sorption. Results revealed time-dependant Cd sorption and marked desorption hysteresis by calcite under environmentally relevant conditions. Data obtained were fitted to a first-order kinetic model and a concentric shell diffusion model. Both models described the progressive transfer of Cd2+ to a less reactive form within calcite and subsequent desorption of Cd subject to different initial contact times. The kinetic model provided a better fit to the combined sorption and desorption data (R2 = 0.992). It differentiates between two ‘pools’ of sorbed Cd2+ on calcite, ‘labile’ and ‘non-labile’, in which labile sorbed Cd is in immediate equilibrium with the free Cd2+ ion activity in solution whereas non-labile Cd is kinetically restricted. For the diffusion model (R2 = 0.959), the rate constants describing Cd dynamics in calcite produced a half-life for Cd desorption of ∼175 d, for release to a ‘zero-sink’ solution. Results from this study allow comment on the likely mechanisms occurring at the calcite surface following long-term Cd sorption.  相似文献   
925.
The Nernst partition coefficient of nickel (DNi) between Cr-spinel and silicate melt in natural systems has been investigated using mid-ocean ridge basalts (MORB) and other volcanic rocks. The Cr-spinel/olivine DNi values in volcanic rocks are between 1.2 and 0.3, indicating that the Cr-spinel/liquid DNi values vary from slightly higher to significantly lower than the olivine/liquid DNi values in natural systems. The Cr-spinel/liquid DNi values from the MORB samples vary between 6 and 11, slightly higher than those from the S-bearing experiments of Satari et al. [Satari P., Brenan J. M., Horn I. and McDonough W. F. (2002) Experimental constraints on the sulfide- and chromite-silicate melt partitioning behavior of rhenium and platinum-group elements. Economic Geology97, 385-398]. The results of the MORB samples and the experiments of Satari et al. (2002) indicate a negative correlation between the Cr-spinel/liquid DNi and the XCr values in Cr-spinels (Cr cation number on the basis of 3 total cations in the spinel structure). Variations of Cr-spinel/liquid DNi values with Cr-spinel compositions can be estimated from an empirical equation based on the results of the MORB samples and the experiments by Satari et al. (2002). The choice of Cr-spinel/liquid DNi = 10 for numerical modeling by Righter et al. [Righter K., Leeman W. P. and Hervig R. L. (2006) Partitioning of Ni, Co, and V between spinel-structured oxides and silicate melts: importance of spinel composition. Chemical Geology227, 1-25] is reasonable for basaltic systems. For picritic and komatiitic systems a lower value of ∼5 is more appropriate.  相似文献   
926.
Dissolved tetrafluoromethane (CF4) and sulfur hexafluoride (SF6) concentrations were measured in groundwater samples from the Eastern Morongo Basin (EMB) and Mojave River Basin (MRB) located in the southern Mojave Desert, California. Both CF4 and SF6 are supersaturated with respect to equilibrium with the preindustrial atmosphere at the recharge temperatures and elevations of the Mojave Desert. These observations provide the first in situ evidence for a flux of CF4 from the lithosphere. A gradual basin-wide enhancement in dissolved CF4 and SF6 concentrations with groundwater age is consistent with release of these gases during weathering of the surrounding granitic alluvium. Dissolved CF4 and SF6 concentrations in these groundwaters also contain a deeper crustal component associated with a lithospheric flux entering the EMB and MRB through the underlying basement. The crustal flux of CF4, but not of SF6, is enhanced in the vicinity of local active fault systems due to release of crustal fluids during episodic fracture events driven by local tectonic activity. When fluxes of CF4 and SF6 into Mojave Desert groundwaters are extrapolated to the global scale they are consistent, within large uncertainties, with the fluxes required to sustain the preindustrial atmospheric abundances of CF4 and SF6.  相似文献   
927.
Atomistic simulations have been carried out to investigate the mechanisms of noble gas incorporation in minerals using both the traditional two-region approach and the “supercell” method. The traditional two-region approach has been used to calculate defect energies for Ne, Ar, Kr and Xe incorporation in MgO, CaO, diopside and forsterite in the static limit and at one atmosphere pressure. The possibilities of noble gas incorporation via both substitution and interstitial mechanisms are studied. The favored mechanism varies from mineral to mineral and from noble gas to noble gas. In all minerals studied, the variation of the solution energies of noble gas substitution with atomic radius appears approximately parabolic, analogous to those for 1+, 2+, 3+ and 4+ trace element incorporation on crystal lattice sites. Noble gas solution energies thus also fall on a curve, similar to those previously observed for cations with different charges, but with much lower curvature.The “supercell” method has been used to investigate the pressure dependence of noble gas incorporation in the same systems. Results indicate a large variation of the solubility of the larger noble gases, Kr and Xe with pressure. In addition, explicit simulation of incorporation at the (0 0 1) surface of MgO shows that the solubility of the heavier noble gases may be considerably enhanced by the presence of interfaces.  相似文献   
928.
We studied uptake mechanisms for dissolved Al on amorphous silica by combining bulk-solution chemistry experiments with solid-state Nuclear Magnetic Resonance techniques (27Al magic-angle spinning (MAS) NMR, 27Al{1H} cross-polarization (CP) MAS NMR and 29Si{1H} CP-MAS NMR). We find that reaction of Al (1 mM) with amorphous silica consists of at least three reaction pathways; (1) adsorption of Al to surface silanol sites, (2) surface-enhanced precipitation of an aluminum hydroxide, and (3) bulk precipitation of an aluminosilicate phase. From the NMR speciation and water chemistry data, we calculate that 0.20 (±0.04) tetrahedral Al atoms nm−2 sorb to the silica surface. Once the surface has sorbed roughly half of the total dissolved Al (∼8% site coverage), aluminum hydroxides and aluminosilicates precipitate from solution. These precipitation reactions are dependent upon solution pH and total dissolved silica concentration. We find that the Si:Al stoichiometry of the aluminosilicate precipitate is roughly 1:1 and suggest a chemical formula of NaAlSiO4 in which Na+ acts as the charge compensating cation. For the adsorption of Al, we propose a surface-controlled reaction mechanism where Al sorbs as an inner-sphere coordination complex at the silica surface. Analogous to the hydrolysis of , we suggest that rapid deprotonation by surface hydroxyls followed by dehydration of ligated waters results in four-coordinate (>SiOH)2Al(OH)2 sites at the surface of amorphous silica.  相似文献   
929.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   
930.
δ34S and sulfate concentrations were determined in snow pit samples using a thermal ionization mass spectrometric technique capable of 0.2‰ accuracy and requires ≈5 μg (0.16 μmol) natural S. The technique utilizes a 33S-36S double spike for instrumental mass fractionation correction, and has been applied to snow pit samples collected from the Inilchek Glacier, Kyrgyzstan and from Summit, Greenland. These δ34S determinations provide the first high-resolution seasonal data for these sites, and are used to estimate seasonal sulfate sources. Deuterium (δD) and oxygen (δ18O) isotope data show that the Inilchek and Summit snow pit samples represent precipitation over ≈20 months.The δ34S values for the Inilchek ranged from +2.6 ± 0.4‰ to +7.6 ± 0.4‰ on sample sizes ranging from 0.3 to 1.8 μmol S. δ34S values for Greenland ranged from +3.6 ± 0.7‰ to +13.3 ± 5‰ for sample sizes ranging from 0.05 to 0.29 μmol S. The concentration ranged from 92.6 ± 0.4 to 1049 ± 4 ng/g for the Inilchek and 18 ± 9 to 93 ± 6 ng/g for the Greenland snow pit. Anthropogenic sulfate dominates throughout the sampled time interval for both sites based on mass balance considerations. Additionally, both sites exhibit a seasonal signature in both δ34S and concentration. The thermal ionization mass spectrometric technique has three advantages compared to gas source isotopic methods: (1) sample size requirements of this technique are 10-fold less permitting access to the higher resolution S isotope record of low concentration snow and ice, (2) the double spike technique permits δ34S and S concentration to be determined simultaneously, and (3) the double spike is an internal standard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号