排序方式: 共有26条查询结果,搜索用时 0 毫秒
11.
基于常规三维变分同化(3DVAR)思想和反问题中的正则化技术,提出了适用于风场融合的带正则化约束项的3DVAR方法,在南海海域开展数据融合试验,同时采用模型函数方法确定合理的正则化参数,针对一次台风个例进行了QuikSCAT散射计海面风场数据和华南中尺度模式海面风场数据的融合试验,结果表明采用带正则化约束的3DVAR融合方法,明显消除了常规3DVAR方法融合风场时带来的虚假信息,融合后分析风场以及涡度场和散度场分布均匀,结构清晰,气旋中心显著,且分析场中观测起主导作用;采用信号自由度(DFS)方法对融合方法进行定量评估,发现相对常规3DVAR方法,带正则化约束的3DVAR融合系统中观测数据提供的DFS较多,同时提高了观测场对分析场的影响;基于独立观测资料对融合结果进行检验发现相对华南中尺度模式和常规3DVAR方法的统计结果,带正则化约束的3DVAR方法得到的风场具有最小的均方根误差和最大的相关系数。 相似文献
12.
13.
基于COSMIC资料的边界层高度时空特征分析 总被引:1,自引:0,他引:1
利用2007-2012年的COSMIC掩星折射率资料,结合改进的折射率断点法,分析了全球海上边界层高度的季节、日变化特征,并引入尖锐系数对结果进行了评估。边界层高度大值区水平分布呈纬向不对称,中低纬度地区的几个区域边界层最高,由赤道向南北两极递减。在副热带高压控制的部分地区,边界层高度季节变化不明显,而在大陆西海岸的盛行层状云地区,表现出一定的季节变化特征。边界层高度的日变化相对较弱,并且在不同地区略有差异。尖锐系数的评估结果表明:尖锐系数在亚热带最大,折射率断点法能获取准确的边界层高度,而在赤道辐合带和南太平洋辐合带最小,边界层高度定义相对模糊。 相似文献
14.
15.
使用海-气-浪耦合系统模拟了台风"Megi"(2010)过程中海洋与大气变化过程,重点研究了台风浪的有效波高、波周期、波向和波长等波参数的分布特征,并通过一组针对海浪的控制试验检验了海浪对台风及海洋环流的影响状况。结果表明:台风过程中的海浪有效波高最高达到了12 m以上,波高高值区域在移动方向的右前方;台风中心附近的海浪波长最长,周期最大,谱峰周期大于平均周期,谱峰波向较平均波向向右偏转了15°~20°。通过与未耦合海浪模式的控制试验对比发现,通过拖曳作用,海浪调节了海面风速的大小,使得台风后部风速减小约3~5 m/s;同时,由于海面粗糙度的增加,台风内核区域潜热通量有所增加,最大达到了15%。另外,海浪的加入加剧了海洋混合,导致了更大程度的降温,模拟值更接近实况值,同时也改变了海流的方向,影响了SST等海洋热动力状态模拟的准确性。 相似文献
16.
基于中国科学院南海海洋研究所提供的2012年1月1日—2013年12月31日西沙自动气象站观测资料以及同时间序列的欧洲中心ERA-interim再分析风场产品,统计了ASCAT和HY-2A散射计风场产品的误差特征,分析散射计资料在南海的适用性。分析得出:ASCAT和HY-2A的风速、风向与自动站一致性高,相关系数均大于0.85,ASCAT风速和风向均方根误差分别为1.57 m/s和15.42 °,HY-2A均方根误差略微偏大,分别为2.02 m/s和24.75 °;ASCAT和HY-2A散射计与ERA-interim风速、风向有很好的一致性,在不考虑低风速( < 3 m/s)的条件下,风速均方根误差分别为1.40 m/s和1.56 m/s,风向均方根误差分别为15.09 °和17.07 °,与设计精度一致,表明ASCAT与HY-2A风场产品在南海是适用的。此外,散射计相对再分析风场的偏差没有明显的季节性变化 相似文献
17.
从上海台风所的台风路径统计动力预报模型SD-90出发,利用变分同化方法结合反问题正则化思想和最优控制技巧(而非统计方法),反演出台风所受到的除科氏力以外所有力的合力及台风的初始速度,用实际台风定位资料分析不同的正则化参数及最优控制参数的组合对同化结果的影响,分析不同路径特征台风路径的拟合效果。该方法具有模式简单、应用资料少、拟合精度高等优点,为台风路径的预报提供了新的思路。 相似文献
18.
19.
20.
南海海面风场变分融合的初步研究 总被引:1,自引:0,他引:1
利用二维变分同化(2DVar)方法,把南海海域(110.12~117.92 °E,10.12~17.92 °N)QuikSCAT散射计风场资料融合到区域高分辨率数值模式(华南中尺度天气预报模式GZMM)风场资料中,并利用独立的观测数据(西沙站海面风场观测值)对融合效果进行了检验。得到结论:(1) 风场单点融合试验表明,风场融合设计方案基本合理;(2) 与独立观测数据的偏差分析表明,融合后的风场在经向和纬向的均方根误差分别为2.59 m/s、2.76 m/s,明显好于模式风场(3.63 m/s、2.81 m/s)和散射计风场(2.79 m/s、2.80 m/s),这说明融合的风场优于模式风场和散射计风场;(3) 与独立观测数据的相关性分析表明,融合后的风场在经向和纬向的相关系数分别为0.80和0.81,好于散射计风场(0.74和0.79),而比模式风场(0.91和0.94)的要差。最后讨论了均方根误差与相关系数不一致的可能原因。 相似文献