全文获取类型
收费全文 | 292篇 |
免费 | 56篇 |
国内免费 | 78篇 |
专业分类
测绘学 | 45篇 |
大气科学 | 30篇 |
地球物理 | 53篇 |
地质学 | 186篇 |
海洋学 | 54篇 |
天文学 | 4篇 |
综合类 | 9篇 |
自然地理 | 45篇 |
出版年
2024年 | 6篇 |
2023年 | 13篇 |
2022年 | 17篇 |
2021年 | 25篇 |
2020年 | 18篇 |
2019年 | 16篇 |
2018年 | 7篇 |
2017年 | 12篇 |
2016年 | 16篇 |
2015年 | 20篇 |
2014年 | 16篇 |
2013年 | 17篇 |
2012年 | 22篇 |
2011年 | 27篇 |
2010年 | 19篇 |
2009年 | 14篇 |
2008年 | 14篇 |
2007年 | 18篇 |
2006年 | 13篇 |
2005年 | 10篇 |
2004年 | 7篇 |
2003年 | 4篇 |
2002年 | 12篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 12篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 7篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 5篇 |
1989年 | 3篇 |
1988年 | 3篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1981年 | 2篇 |
1974年 | 1篇 |
1964年 | 1篇 |
1963年 | 1篇 |
1962年 | 1篇 |
1959年 | 1篇 |
1957年 | 1篇 |
1956年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有426条查询结果,搜索用时 8 毫秒
51.
本文利用沉积物捕获器回收的连续时间序列沉降颗粒物样品,研究了南海西北部海南岸外陆坡外缘海域颗石藻的通量和属种组成变化及其环境意义。研究发现,东亚夏季风引起的海南岸外上升流以及冬季风导致的混合层深度增加都会刺激该区域颗石藻的生长,其中夏季上升流的影响尤为显著。从颗石粒属种组成来看,Florisphaera profunda是南海西北部中深层(1 000m)水体中主要的颗石粒优势种,此外Emiliania huxleyi,Gephyrocapsa oceanica和Gephyrocaps ericsonii等属种含量也颇高。然而在将颗石粒折算成颗石球数量后,Emiliania huxleyi则成为主要优势种。沉积物捕获器中F.profunda的相对百分含量与颗石粒总通量呈显著的负相关,表明F.profunda的相对含量与总的颗石藻生产力有着密切联系。本结果对于利用沉积物中的颗石藻记录,尤其是F.profunda相对含量变化,恢复和重建古海洋环境尤其是古海洋生产力的研究提供了直接的理论证据。 相似文献
52.
楚科奇海R12a沉积柱状样500年以来生物标记物记录 总被引:2,自引:0,他引:2
通过多参数生物标志物法对取自中国第二次北极考察的R12a岩心顶部40 cm样品进行了浮游植物和种群结构变化的研究,获得了500 a以来浮游植物初级生产力和种群结构变化信息。结果表明:R12a岩心在过去的500多年来,所记录的海洋初级生产力呈上升趋势,单一藻类的生产力总体上也呈现上升趋势。浮游植物种群结构主要表现为颗石藻相对含量下降,硅藻相对含量上升,甲藻没有明显的波动,这可能与北太平洋水输入决定的楚科奇海营养盐结构及夏季海冰覆盖变化有关。 相似文献
53.
利用2008年夏季中国第三次北极科学考察获得的营养盐、叶绿素a、温度和盐度等数据资料,结合现场营养盐添加实验的结果讨论西北冰洋加拿大海盆北部营养盐对浮游植物生长的限制作用。结果表明:由于融冰水稀释作用,加拿大海盆B80站约20m深度存在较强的盐跃层,阻碍了水体上下混合。较低浓度的溶解无机氮(DIN)和硅酸盐(分别为0.31μmol/L和0.94μmol/L)以及严重偏离Redfield比值的N/P、N/Si比值(分别为0.42和0.32)表明加拿大海盆表层水体存在N和Si限制。根据现场营养盐加富实验各培养组叶绿素a浓度变化、营养盐吸收总量差异和浮游植物种群结构,进一步表明氮是北冰洋海盆首要限制营养盐,而Si则抑制了硅质生物的生长。同时,较小的硝酸盐半饱和常数(Ks)证明即使在营养盐充足的情况下北冰洋海盆浮游植物生长速率也处于较低水平。计算得到各培养组营养盐吸收比例(N/P比值)均大于Redfield比值,可能是培养实验过程中以微型、微微型浮游植物为主,硅藻等小型浮游植物为辅造成的。 相似文献
54.
基于对下扬子区海相中、古生界构造及沉积沉降特征的研究, 以影响和反映构造稳定及晚期生烃的基底性质、构造变形特征、印支面埋深、沉积沉降中心迁移特征等为依据, 将下扬子区划分为5个一级、17个二级地质结构区。以构造稳定、有效保存及晚期生烃、晚期成藏等为评价标准, 综合评价南黄海中部晚期隆起稳定区(Ⅰ2)、江都-东台-南黄海南部晚期沉降深冲断区(Ⅰ3)、泰兴-海安晚期沉降深冲断区(Ⅱ1)、南通-南黄海南部晚期沉降浅推覆区(Ⅱ2)及太湖晚期沉降浅推覆区(Ⅱ4)为下古生界油气勘探有利区; 南黄海北部晚期沉降深冲断区(Ⅰ1)、江都-东台-南黄海南部晚期沉降深冲断区(Ⅰ3)、滨海-大丰晚期沉降深下古卷入区(Ⅰ4)和泰兴-海安晚期沉降深冲断区(Ⅱ1)为上古生界油气勘探有利区; 南黄海北部晚期沉降深冲断区(Ⅰ1)、滨海-大丰晚期沉降深下古卷入区(Ⅰ4)、金湖-高邮晚期沉降深下古卷入区(Ⅰ5)及泰兴-海安晚期沉降深冲断区(Ⅱ1)为古潜山油气勘探有利区。研究对于该区海相中古生界勘探选区具有重要意义。 相似文献
55.
为了解塔里木河下游生态输水量与地下水埋深多年响应变化过程,得出地下水埋深对生态输水的响应变化规律,以塔里木河下游英苏断面为研究区,运用定性与定量分析方法,综合考虑不同输水差异(包括零输水年即2008年、输水极少年即2009年、输水较多年2011年等),对2000-2015年英苏断面1 050 m范围内地下水埋深数据进行了分析。结果表明:研究断面内地下水埋深在各年份总体呈现比较平稳的递减趋势,年内个别月具有较大的增幅,另外由于冻土消融等因素影响,地下水埋深在2~3月有一定的增幅;离河较近区域的地下水埋深变化对生态输水的响应具有时间同步性,而离河道较远地区的地下水埋深在响应时间上存在滞后性,本研究断面1 050 m范围内地下水埋深响应时间维持在1 a内;经过多年生态输水过程,英苏监测断面距离河道约750 m范围内地下水平均埋深维持在2~6 m范围内,基本达到植物生长所需地下水埋深水平;另外,综合分析研究断面多年输水引起的地下水位响应过程,为获得生态输水过程所带来的最大生态效益,生态输水不仅要保持一定的输水量,还要保持输水年周期的连续性。 相似文献
56.
57.
WDC-D地震前兆综合观测数据的抢救和整编 总被引:1,自引:0,他引:1
概述了地震前兆综合观测数据抢救和整编的必要性; 介绍了前兆观测数据库的选取及特点; 系统收集了首都圈范围内(包括5省2市)的地震前兆观测数据, 并对其进行分析、 整编并入库。 通过WDC-D项目支持, 本专题共抢救和整编了8个单位共304个台站的前兆观测数据, 其中专业台121个, 地方台183 个, 共计1709个测项的344M前兆综合观测数据。 同时, 通过局域网和Internet为研究和分析人员提供了前兆综合观测数据的服务和数据共享。 文中分析了WDC-D项目数据共享服务的几种方式, 即局域网内基于C/S结构的应用、 广域网上基于B/S结构的数据下载服务及图形服务方式, 并简要分析了这几种数据服务方式的优缺点。 最后, 在总结和分析所做工作的基础上, 提出了几点建议。 相似文献
58.
文章在分析采矿型崩滑灾害发育特征的基础上,得出西南煤系地层山区地下采动型崩滑灾害常发生在层状碳酸盐岩与碎屑岩地层组成的褶皱翼部和核部的陡崖带上,与地形地貌、地层结构与地下采矿工程活动等因素关系密切,并指出薄矿层开采诱发大型山体崩滑灾害的具体过程:①采空后覆岩顶板塌落—覆岩顶板离层,采空区上覆岩层内部及层间自下而上应力传递;②地下水运移通道形成,并加快更大范围岩体结构破坏及扩展,加速了岩体结构面的松动与破坏;③上覆岩层不均匀沉降导致坡脚压裂,山体大型岩体结构面逐渐拉剪或压剪变形扩展,最终山体发生累积损伤与大规模崩滑灾害。此外,传统经验公式的计算方法对此类采矿型崩滑灾害已不适用,建议开展西南煤系地层山区地质结构与地下采动诱发崩滑灾害的相互作用关系、薄矿层采空区上部山体累积断裂损伤—岩体松动、裂隙扩展-岩溶管道流、裂隙流变化的链式响应机制、地下采动型崩滑灾害评价方法等关键科学问题的研究,以推动采矿型地质灾害防灾减灾工作的发展。 相似文献
59.
介绍了太阳位置的确定方法,并通过计算给出了全省气象观测台站的日出、日落方向的太阳方位角变化结果以及每个台站一年中正午时刻太阳高度角变化范围。 相似文献
60.
工业革命以来大气中CO2浓度由280 ppm剧增至375 ppm,是导致全球气候变暖的主要原因[1]。海洋作为大气CO2的“汇”之一,每年可吸收人类释放CO2气体总量的30%,对全球碳循环的收支平衡有重要作用[2]。两极地区是CO2的主要汇区,也是全球变化的重要反馈窗口。因此,了解碳在北冰洋的生物地球化学循环过程是十分必要的[3-4]。海洋中的生源沉积物主要来自于海洋上层浮游生物碎屑的沉降,主要由蛋白石(以生物硅代替,BSi)、碳酸钙(CaCO3)和有机质(通常用有机碳替代,TOC)组成[5]。 相似文献