排序方式: 共有37条查询结果,搜索用时 0 毫秒
31.
基于高性能并行有限元方法,建立含地表地形和Moho面起伏的大规模非均匀椭球地球模型,计算了2015年9月17日智利Illapel M_W8.3地震同震效应,同时讨论2010年智利Maule M_W8.8地震和2014年智利Iquique M_W8.1地震对2015年智利Illapel地震的加载作用,进一步分析这3个地震共同作用对南美大陆及周围断层的地震危险性影响.结果表明:对此次智利Illapel地震CEA(中国地震局地球物理研究所)滑动模型计算的地表最大水平位移约为3 m,USGS(美国地调局)模型的最大水平位移约6 m.特大地震影响范围广,南美大陆接近一半区域同震水平位移量级达到0.5 mm;受3次地震共同作用,智利2010年Maule地震南部俯冲带、2015年Illapel地震和2014年Iquique地震之间俯冲带,以及2014年Iquique地震以北俯冲带,受到10 kPa东西向压应力加载;2010年Maule地震和2014年Iquique地震共同加速了2015年Illapel地震滑动;1960年Valdivia M_W9.5地震破裂区、2014年Iquique地震和1995年Antofagasta地震之间区域以及2010年Maule地震和2015年Illapel地震的未破裂区重合处库仑应力变化均超过10 kPa,有可能加速强震的发生. 相似文献
32.
2018年1月23日美国阿拉斯加湾科迪亚克岛东南280 km发生M_W 7.9级走滑地震,地震震中位于太平洋板块.震源机制解显示地震破裂面是走向东西(左旋)或走向南北(右旋)的高倾角断层,美国地震调查局(USGS)和中国地震局(CEA)分别发布了走向东西和南北的破裂模型.随着同震GPS数据的发布、余震数据的积累和对区域地质构造的了解,提供了更多资料来约束发震面,我们通过建立全球横向非均匀并行椭球型地球弹性模型,计算此次阿拉斯加湾大地震产生的同震形变、库仑应力变化以讨论上述破裂模型的差别.初步计算结果表明:USGS模型计算的最大地表水平位移约为4.5 m,CEA模型计算的最大水平位移约为3 m, USGS模型计算结果和GPS观测吻合更好;采用最优破裂面投影,计算USGS模型和CEA模型引起的库仑应力变化,分别有92.3%和72.7%的余震落在库仑应力大于0.01 MPa区域;在地质构造上,USGS给出的阿拉斯加地震节面与海底断层走向一致,但余震分布呈现出共轭条带分布,指示了地震破裂过程的复杂性.从静态应力转移角度,本次地震引起了科迪亚克破裂段(Kodiak Segment)的库仑应力增加最大0.01 MPa,加速了未来地震发生的可能性. 相似文献
33.
天山造山带构造环境复杂,活动断裂带和强震分布广泛,且主要分布于阿尔泰山、天山、西昆仑—帕米尔弧形构造带上,尤以天山地区最为集中.迄今为止,天山造山带地区的主要断裂带的活动特征与孕震应力场特征之间的动力学机理尚未有清晰的认识.本文以GPS等实际观测数据为约束,建立有限元数值模型,计算了研究区域地壳形变、应力/应变积累速率、弹性应变能密度以及库仑应力变化率等关键因素.模拟计算结果显示地表速度场与研究区域实际GPS观测值基本一致,且主要断裂带上弹性应变能密度分布与实际地震活动性也基本吻合,验证了数值模型和结果的可靠性.结合最新的观测和数值模拟结果分析发现,研究区的断层和地震活动性主要受控于近南北向的主压应力,与主要观测特征相一致.同时,帕米尔高原北部边界带—塔什库尔干断裂(TKF)、天山造山带南边界的东侧—迈丹断裂(MDF)、兴地断裂(XDF)库仑应力增大明显,在未来强震发生的可能性较高,应予密切关注. 相似文献
34.
2008年3月21日新疆于田发生M S7.3级地震,2014年2月12日于田再次发生M S7.3级地震,两次地震相距约110 km.但是,前者震源机制为正断层,后者震源机制为左旋走滑断层.为进一步探讨这两次地震的孕育应力环境、发震机制及其动力学成因,本文进行三维有限元数值试验分析,计算了该区域在GPS约束条件下的速度场、应力和应变场变化,并与实际观测资料进行对比.数值计算得到的区域内几条主要大的走滑断层错动性质,与实际地质观察到的断层左旋或右旋性质吻合,验证了计算结果的可靠性.结果表明于田及其临近区域整体上处于北东-南西向挤压和北西-南东向拉张状态.在GPS速度约束条件下,2008年于田地震震中区域最大主张应变率大于最大主压应变率,处于以拉张为主的应力状态,NE走向断层受到北东-南西方向的拉应力作用,从而形成正断层;2014年于田地震处于拉张应变率与压应变率几乎一致的区域,NEE走向断层在NE-SW主压应力和NW-SE主张应力作用下发生左旋走滑. 相似文献
35.
汶川地震后,紫坪铺水库蓄水是否触发了汶川地震在国内外学术界引起了广泛关注.除定性讨论外,许多学者也采用定量分析的方法进行了计算,但因计算结果不同而得出了不同的结论.本文从目前紫坪铺水库蓄水不同研究组定量计算中出现的争议为出发点,通过对水库蓄水定量计算基本原理和可能引起计算结果差异可能因素的分析,找出定量计算中的关键影响因素,了解目前水库蓄水定量计算中存在的不确定性问题所在.初步结果显示:计算方法、模型维数、扩散模型、震源参数和扩散系数等的取值不同是造成计算结果差异的主要因素,特别是裂隙岩体的扩散系数.在紫坪铺水库定量计算中模型维数的差别使得汶川地震震源处的库仑应力变化计算结果相差约3倍;仅考虑断层渗透率(把岩体渗透率视为无穷大)或仅考虑均匀各向同性的岩体渗透率(忽视断层渗透率),均具有片面性;震源机制解断层走向倾角的差异,会显著影响库仑应力大小计算结果,可到达2~7倍;不同扩散系数下,孔隙压力相差可达几百倍."紫坪铺水库蓄水是否能够触发汶川大地震的发生?",鉴于目前的研究成果,库仑应力变化在kPa量级,尚不能排除触发的可能性,但得出的蓄水震源处的库仑应力变化太低,在背景构造应力场不明确的情况下,也不能确定一定有联系.在未来的工作中需有针对性的进行野外考察和室内试验,改进模型,采用高性能模拟分析计算,并在此基础上对中国和世界多个水库地震触发机制进行对比研究,探讨不同机制下水库地震触发机制特点,进一步量化分析水库地震发生的力学机制及水库对构造活动的影响和作用机理. 相似文献
36.
2016年11月13日新西兰南岛北端凯库拉(Kaikoura)发生了MW7.8大地震,造成了强烈的地表变形并引发大面积滑坡和海啸的发生.基于美国地质调查局(USGS)断层滑动模型,建立全球同震横向不均匀并行椭球型地球模型,计算了此次新西兰凯库拉大地震产生的同震形变和应力及库仑应力变化.初步计算结果表明:新西兰凯库拉MW7.8地震造成断层上盘东北向抬升,下盘西南俯冲;引起发震区域同震位移较大,从凯库拉到坎贝拉(Campbell)以及首都惠灵顿(Wellington)整体上东北向抬升,最大同震水平位移1.2 m,垂直位移1.1 m.此次大地震释放了发震断层上积累的压应力,但增加了发震断层两端的挤压力;同时,同震剪应力变化增加了NE-SW向断层发生右旋滑动的危险性;采用此次地震发震断层参数计算得出的最大库仑应力变化增加区域集中在发震断层两端,可达到MPa量级.当分别采用新西兰北岛Awatere断裂系和南岛Wellington断裂系参数计算库仑应力变化时,发现新西兰北岛和南岛震中以南区域的库仑应力均增加,可触发部分余震的发生. 相似文献
37.
天山地区为典型地震活跃区, 为定量分析该构造活跃区强震对周边构造变形和地震活动的影响, 本文基于地震位错理论和岩石圈分层模型计算了天山北部近期发生的2012年伊犁和2017年精河两次 M6.6地震对周围地壳形变和应力的影响。 计算结果显示伊犁地震和精河 M6.6地震引起震中附近地表同震位移达数厘米, 地表同震应变量级约为10 -7; 对比天山北部地区年平均构造形变特征, M6.6强震释放了震中附近近十年的构造主压应变积累; 地震引起震中附近(80 km内)同震库仑应力变化大于1 kPa, 而距震中较远区域活动断层上库仑应力变化微弱。 结合天山北部现今地壳变形特征及区域地震分布, 初步推测两次 M6.6地震的发生对震后余震有显著的触发作用, 而对区域后续微震活动的影响微弱。 相似文献
|