首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   3篇
  国内免费   27篇
地球物理   20篇
地质学   48篇
综合类   4篇
  2024年   2篇
  2022年   5篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   8篇
  2008年   3篇
  2007年   1篇
  2006年   6篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   4篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
41.
利用FLAC模拟了两个不同直径圆形隧洞的剪切应变局部化过程。为了模拟隧洞开挖,利用编写的FISH函数删除隧洞内部的单元。岩石服从莫尔库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化-理想塑性行为。本文的模拟分为3步:首先,将静水压力施加在模型上,直至达到静力平衡状态;然后,利用编写的FISH函数,开挖隧洞;最后,计算重新开始,直至达到静力平衡状态(对于小孔隧洞)或者塑性流动状态(对于大孔隧洞)。模拟结果表明,多个“狗耳”形或V形坑在小孔隧洞周边附近产生,最终,围岩处于平衡状态。这一结果与陆家佑和王昌明(1994)的实验结果及许多现场观察结果一致。对于大孔隧洞,由于在围岩中出现了多条剪切带,因而隧洞的整个断面均遭到了破坏。这一现象与现场观察到的猛烈破坏现象类似。隧洞的剪切应变局部化受隧洞尺寸的影响。  相似文献   
42.
王学滨  马剑  刘杰  潘一山 《岩土力学》2004,25(6):904-908
研究了岩样在单轴压缩条件下轴向应力.侧向或环向变形的全程曲线特征。基于考虑峰值剪切强度后微小结构之间相互影响和作用的梯度塑性理论,得到了由于剪切局部化而引起的侧向塑性变形。利用虎克定律描述了试件的弹性变形,得到了轴向应力.侧向变形全程曲线的解析解。在软化阶段,试件中部侧向变形及对靠近试件上端或下端部位的侧向变形并不相同。与轴向应力.应变曲线可能出现的回跳现象类似。试件中部轴向应力.侧向应变曲线也可能出现回跳现象。在应变软化阶段,与应力.侧向应变曲线相比,应力.环向应变曲线不容易发生回跳现象。若在试件内部出现多条剪切带,则应该以等效剪切带宽度替代本文中的剪切带宽度。随着剪切带倾角、内部长度参数的降低、剪切模量的增加及弹性模量的降低,轴向应力.侧向应变曲线越陡;甚至能出现弹性回跳。  相似文献   
43.
泊松比对岩样破坏模式及全部变形特征的影响   总被引:1,自引:0,他引:1  
利用编写的计算岩样全部变形特征的FISH函数, 采用FLAC模拟了泊松比不同时单缺陷岩石试样的破坏及全部变形特征。在峰前及峰后, 本构模型分别取为线弹性模型及莫尔库仑剪破坏与拉破坏复合的应变软化模型。高泊松比使岩样发生由单一剪切破坏向复杂破坏转变、破坏区域的面积增加、剪切带倾角降低, Coulomb、Roscoe及Arthur理论对此无法解释。不同泊松比时计算得到的峰前应力-轴向应变曲线、应力-侧向应变曲线、侧向应变-轴向应变曲线、体积应变-轴向应变曲线的线性阶段与平面应变压缩条件下的线弹性解吻合。若泊松比超过1/3, 通过计算得到的平面应变压缩泊松比可大于0.5, 这被数值模拟确认。泊松比的增加使峰后的侧向应变-轴向应变曲线、体积应变-轴向应变曲线、计算得到的泊松比-轴向应变曲线变得不陡峭, 使峰后的应力-侧向应变曲线变得陡峭, 使破坏的前兆变得不明显。   相似文献   
44.
对于平面应变压缩条件下含有随机缺陷的岩样,利用FLAC研究了孔隙压力对岩样破坏过程、全部变形特征及前兆的影响。以前编写的若干FISH函数,被用于生成缺陷和计算轴向、侧向、体积应变及侧向应变与轴向应变比值的负值(计算得到的泊松比)。在峰值应力之后,密实岩石单元服从线性应变软化行为及随后的理想塑性行为,而材料缺陷呈现理想塑性行为。当孔隙压力较高时,应力-侧向应变曲线具有一平台;破坏的前兆更明显;变形后岩样的体积总是大于原始体积;在初始加栽阶段、均匀变形阶段及峰后变形阶段,由于明显的侧向膨胀,计算得到的泊松比远大于0.5。当孔隙压力较低时,在峰值应力之前,变形后岩样的体积小于原始体积,体积扩容出现于峰值应力之后,引起了负的体积应变。利用广义虎克定律,解释了平面应变弹性状态下数值结果的合理性。对岩样进行带状区域扫描后,确认随机缺陷的初始分布与岩样的最终破坏形态紧密相关。  相似文献   
45.
利用FLAC模拟了不同围压条件下圆形巷道的岩爆过程。为了模拟巷道开挖,利用编写的FISH函数删除巷道内部的单元。岩石服从摩尔库仑剪破坏与拉破坏复合的破坏准则,破坏之后呈现应变软化-理想塑性行为。模拟结果表明:当围压较低时,剪切应变集中区域呈圆环状,围岩能保持稳定,不出现剪切带;当围压增加到一定程度时,围岩中出现了“狗耳”形的V形坑,发生岩爆,但围岩也还能保持稳定;当围压进一步增加时,围岩中出现了多条狭长的剪切带,巷道的整个断面均遭到了破坏,发生强烈的岩爆。随着围压的增加,V形岩爆坑变大、变深,剪切带花样的对称性变差;在高围压时,剪切带花样与塑性力学中的滑移线网有类似之处。  相似文献   
46.
视岩石将由3种成分构成:颗粒、界面和基体,采用FLAC模拟圆形巷道开挖之后围岩中的剪切应变增量、最小及最大主应力的分布及演变规律。在静水压力条件下,剪切应变增量的高值区主要分布在软弱的基体之中,形成了相互交织的剪切带网格,而最小主应力的高值区(环向高受压区)主要分布在相互接触的颗粒之中,形成了若干圆环。当侧压系数不等于1时,剪切带网格的轮廓呈三角形。颗粒尺寸的增加使剪切带的数目降低,长度增加,最小主应力的高值区的数目降低,间距增加;颗粒尺寸大时的结果与分区破裂化现象相近。由此提出一种可能的裂化机制:节理岩体中的若干岩块由于自组织作用而被挤成1圈,如果应力水平足够高,就可以形成多条环向的被未破坏区隔开的破坏区。  相似文献   
47.
含不同半径孔洞的颗粒体模型的力学行为数值模拟   总被引:3,自引:0,他引:3  
本文通过编程建立了非连续介质(颗粒体材料)模型,采用FLAC软件模拟了静水压力条件下不同半径的巷道围岩中的剪切应变增量、最小主应力及最大主应力的分布规律。研究表明,随着孔洞半径的增大,呈圆环形的剪切应变增量与最小主应力的高值区的圈数、呈辐射状的最大主应力的高值区的延伸范围及剪切应变增量的最大值都呈先慢后快的增长趋势。模型中最大的拉应力接近于在模型四周所施加的压应力,而最大的压应力约为所施加的压应力的5~10倍。模型内部的剪切应变增量、最小主应力及最大主应力的分布是高度不均匀的。具有较高的差应力的位置与具有较高的剪切应变增量的位置具有很好的一致性。  相似文献   
48.
煤岩两体模型变形破坏数值模拟   总被引:3,自引:0,他引:3  
王学滨 《岩土力学》2006,27(7):1066-1070
采用拉格朗日元法,在弹性岩石与弹性-应变软化煤体所构成的平面应变两体模型的上、下端面上不存在水平方向摩擦力条件下,模拟了模型的破坏过程、岩石高度对模型及煤体全程应力-应变曲线、煤体变形速率、煤体破坏模式及剪切应变增量分布的影响。结果表明,当模型的全程应力-应变曲线达到峰值时煤体内部的剪切带图案已经十分明显,在模型的应变硬化阶段,煤体中的应变局部化可视为模型失稳破坏的前兆,随岩石高度的增加,模型应力-应变曲线的软化段变得陡峭,这与单轴压缩条件下的解析解在定性上是一致的;煤体应力-应变曲线的软化段变得平缓,煤体消耗能量的能力增强;弹性阶段煤体的变形速率降低;煤体内部的剪切应变增量增加。煤体应力-应变曲线的软化段的斜率、弹性阶段煤体的变形速率、煤体内部的剪切应变增量及塑性耗散能都受岩石高度的影响,说明了岩石几何尺寸对煤体的影响(煤岩相互作用)是不容忽视的。  相似文献   
49.
主应变轴偏转是塑性剪切变形的一种结果.同时,主应变轴偏转又会在一定程度上影响变形,从而可能对灾害孕育及发生产生某种影响.因此,正确认识主应变轴偏转角的范围及演变规律对于一些灾害的机理分析及预防可能具有重要的意义.本文在小变形条件下,基于梯度塑性理论的水平剪切带位移公式,并考虑到已有的主应变方向和主应变轴偏转角之间的联系,推导了简单剪切条件下含应变梯度岩石剪切带主应变轴偏转角公式.得到了下列结果,对于左旋剪切带,主应变轴偏转角等于剪切带倾角与45°之差;对于右旋剪切带,主应变轴偏转角等于45°与剪切带倾角之差.基于梯度塑性理论和仿射变换,制作了简单剪切条件下含应变梯度的虚拟剪切带.采用数字图像相关方法对虚拟剪切带主应变轴偏转角进行了测量,获得了虚拟剪切带中心的主应变轴偏转角随虚拟剪切带倾角的演变规律和过虚拟剪切带中心且垂直于虚拟剪切带测线上主应变轴偏转角分布,通过与理论解对比,验证了数字图像相关方法的主应变轴偏转角的正确性.  相似文献   
50.
顾路  王学滨  杜亚志  冯威武 《岩土力学》2016,(4):1013-1022,1041
利用自主开发的基于粒子群优化的数字图像相关方法,获得了单轴压缩湿砂土试样观测平面内主应变轴偏转角的时空分布规律。采用双三次样条插值方法,获取了任意位置的主应变轴偏转角,分析了土样将来出现剪切带位置、剪切带的中心及其尖端附近和剪切带外的主应变轴偏转角随纵向应变的演变规律。研究发现,随着纵向应变的增加,在土样观测平面内,主应变轴偏转角的范围由分散逐渐变得稳定,大部分区域最终分布在-10°~10°之间。当出现较清晰的剪切带以后(硬化阶段后期),剪切带内不同位置处主应变轴偏转角基本趋于恒定或稍有下降,大致稳定在-5°~5°之间,这与剪切带外的点的主应变轴偏转角均处于发展之中不同;而在剪切带尖端附近的点,主应变轴偏转角随纵向应变的演变规律比较复杂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号