全文获取类型
收费全文 | 41篇 |
免费 | 26篇 |
国内免费 | 24篇 |
专业分类
地球物理 | 36篇 |
地质学 | 55篇 |
出版年
2022年 | 1篇 |
2017年 | 1篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2013年 | 2篇 |
2012年 | 5篇 |
2011年 | 3篇 |
2010年 | 1篇 |
2009年 | 1篇 |
2008年 | 2篇 |
2007年 | 3篇 |
2006年 | 6篇 |
2005年 | 3篇 |
2004年 | 7篇 |
2003年 | 2篇 |
2001年 | 6篇 |
2000年 | 2篇 |
1999年 | 8篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 7篇 |
1995年 | 1篇 |
1994年 | 3篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1966年 | 1篇 |
排序方式: 共有91条查询结果,搜索用时 0 毫秒
81.
利用2010年布设在西藏南迦巴瓦构造结的郎嘎、崩嘎、直白和拉格四个宽频地震台所观测到的近5个月的地震记录,采用时间域迭代反褶积技术处理得到接收函数,通过筛选多条相近震中距和反方位角的高质量接收函数求取其叠加平均.对大地电磁数据做Rhoplus分析处理得到视电阻率和相位曲线.利用单台接收函数和相同位置的大地电磁视电阻率和相位联合反演地下一维壳幔结构.联合反演采用遗传算法,并通过权衡图分析大地电磁和地震数据的兼容性.理论值和实测值的对比显示两种数据能同时得到较好拟合.联合反演结果表明:(1)中上地壳为9 km至14 km厚的高阻高速层覆盖于低阻低速层之上的结构,中地壳低阻低速层可能与深部流体和局部熔融共同作用有关.(2)下地壳存在最厚达20 km的高导的壳幔过渡层,波速在4 km/s左右;上地幔约130 km至150 km以下存在软流圈.(3)上地壳的高阻高速层解释为多雄拉组混合岩化角闪岩相变质岩,而直白台所显示的低阻低速层与高压麻粒岩的少量部分熔融有关,可能源于壳幔过渡带镁铁质岩石的相变或更深处幔源岩浆底侵作用的产物. 相似文献
82.
青海茫崖—新疆若羌地震探测剖面及其深部构造的研究 总被引:18,自引:1,他引:18
穿越NE向阿尔金断裂带,首次进行了天然地震探测获取了大量远震与近震资料,对数据进行了层析分析,接收函数和震源定位的研究。提供了阿尔金断裂深部构造的新资料。地震层析资料表明,软流圈的大致深度在100km。地壳各部位的速度特征有较大差异,推断南缘断裂产状较陡。沿此断裂出现的幔源物质,在层析图象上呈低速体。 相似文献
83.
阿尔金断裂带附近地壳结构的接收函数成像及其地球动力学意义 总被引:1,自引:1,他引:1
利用中法1995年布设在跨过阿尔金断裂剖面上的18个流动三分量地震台站记录到的近5个月的天然地震记录,经筛选得到533个高质量接收函数。通过速度分析和接收函数成像处理,得到了阿尔金断裂附近地壳结构的清晰图像。塔里木盆地的Moho界面非常清楚,近水平地位于~44km深度上。该界面以低缓的角度一直向南延伸到了阿尔金断裂附近的~70km的深度。阿尔金断裂以南柴达木盆地下面的Moho界面也十分清楚,近水平地位于~55km的深度上,在阿尔金断裂附近存在向上挠曲,并抬升到了~45km的深度上。在阿尔金断裂下方,Moho界面存在~15km的错断。塔里木盆地Moho之下还存在另一个震相,我们解释为沉积层多次波与可能来自Hales间断面转换波的复合震相。接收函数成像结果表明阿尔金断裂是一个超壳的岩石圈断裂,具有比较直立的产状和很狭窄的剪切变形带。根据这些结果,我们推测塔里木的下地壳可能要比柴达木的下地壳更硬,柴达木地壳增厚的原因可以部分归结于它有一个相对弱的下地壳,青藏高原隆升没有扩展到塔里木盆地是因为塔里木盆地具有更刚性的下地壳和岩石圈地幔。高原北部地壳变形应该是所谓青藏高原隆升的“硬”变形模式(Tapponnieretal... 相似文献
84.
85.
阿尔金断裂是青藏高原西北边缘最主要的断裂.天然地震P波层析成像结果揭示了阿尔金断裂(严格地说这里指阿尔金断裂中部,下同)为一条宽约40km左右的低速带,并以比较直立的产状向下延伸至150km左右深度.结果同时显示塔里木岩石圈曾经挤入到柴达木盆地下面,并受到后来发育起来的阿尔金断裂的切割.本次研究结果支持青藏高原中北部上地幔热物质参与了支撑高原高海拔地形的重力均衡作用的假设。 相似文献
86.
阿尔金断裂带地震的定位及其分布特征 总被引:1,自引:0,他引:1
文中利用中法合作在陈尔金断裂带布设的流动数字化地震台网所获得的数字化资料,采用Prugger等提出的先进的定位技术——单纯形优化的非线性方法(Anonlinerapproachusingasimplexoptimizedtechnique),对发生在台网所能控制范围内的地震首次进行了定位,并对其分布特征进行了初步讨论。 相似文献
87.
88.
89.
通过研究在青藏高原及其部分邻区由三分量宽频地震资料获得的剪切波各向异性的特征,得出了上地幔构造的若干认识,在本区200km以上的上地幔范围内各向异性的方向性变化主要是上地幔物质运移方向的影响,各地体的岩石圈与地壳在相当长时间内是连贯的运移,各向异性的主要方向决定于上地幔承受的主应力剪切作用方向常常与地表的山系和构造方向不一致,最强的各向异性特征出现在高速体地体边缘,与深部热的地幔物质有关,在各地体边缘的走滑断裂附近各向异性与断裂带走向一致。 相似文献
90.
青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉 总被引:22,自引:1,他引:22
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。 相似文献