全文获取类型
收费全文 | 32815篇 |
免费 | 411篇 |
国内免费 | 1066篇 |
专业分类
测绘学 | 1633篇 |
大气科学 | 2753篇 |
地球物理 | 6524篇 |
地质学 | 15078篇 |
海洋学 | 1418篇 |
天文学 | 3127篇 |
综合类 | 2227篇 |
自然地理 | 1532篇 |
出版年
2022年 | 77篇 |
2021年 | 113篇 |
2020年 | 99篇 |
2019年 | 84篇 |
2018年 | 4962篇 |
2017年 | 4251篇 |
2016年 | 2952篇 |
2015年 | 482篇 |
2014年 | 517篇 |
2013年 | 585篇 |
2012年 | 1369篇 |
2011年 | 3028篇 |
2010年 | 2398篇 |
2009年 | 2695篇 |
2008年 | 2196篇 |
2007年 | 2600篇 |
2006年 | 366篇 |
2005年 | 438篇 |
2004年 | 611篇 |
2003年 | 580篇 |
2002年 | 407篇 |
2001年 | 207篇 |
2000年 | 202篇 |
1999年 | 168篇 |
1998年 | 195篇 |
1997年 | 152篇 |
1996年 | 151篇 |
1995年 | 103篇 |
1994年 | 93篇 |
1993年 | 106篇 |
1992年 | 69篇 |
1991年 | 80篇 |
1990年 | 68篇 |
1989年 | 74篇 |
1988年 | 64篇 |
1987年 | 85篇 |
1986年 | 85篇 |
1985年 | 76篇 |
1984年 | 89篇 |
1983年 | 93篇 |
1982年 | 88篇 |
1981年 | 92篇 |
1980年 | 90篇 |
1979年 | 77篇 |
1978年 | 62篇 |
1977年 | 57篇 |
1976年 | 55篇 |
1975年 | 68篇 |
1974年 | 61篇 |
1973年 | 68篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Within the confines of Earth Observation Scientific Knowledge and Technology Transfer in Hungary (EKAT) titled ESA PECS project we gained forum for utilization of our earth observation (EO) knowledge and possibility for further development of experiences. The project aims the horizontal preparation of Hungary for ESA membership – for a dynamically developing sphere in the common part of science, technology and business. For the efficient transfer and dissemination, we preconceived target groups and principles to reach main take-up points and to open new forums of information exchange. Nowadays, user-friendly service, complex supply and real-validation process all have great importance. Joining units of suitable data choice, entire ingestion–processing chains and ergonomic interfaces can only offer a timely and professional solution for the challenges of industry and business sectors. It has to be clearly seen, that information and communication technologies (ICT) and information control becomes a more and more significant part of EO services. 相似文献
52.
Kousik Biswas Debashish Chakravarty Pabitra Mitra Arundhati Misra 《Journal of the Indian Society of Remote Sensing》2017,45(6):913-926
Interferometric Synthetic Aperture Radar (InSAR), nowadays, is a precise technique for monitoring and detecting ground deformation at a millimetric level over large areas using multi-temporal SAR images. Persistent Scatterer Interferometric SAR (PSInSAR), an advanced version of InSAR, is an effective tool for measuring ground deformation using temporally stable reference points or persistent scatterers. We have applied both PSInSAR and Small Baseline Subset (SBAS) methods, based on the spatial correlation of interferometric phase, to estimate the ground deformation and time-series analysis. In this study, we select Las Vegas, Nevada, USA as our test area to detect the ground deformation along satellite line-of-sight (LOS) during November 1992–September 2000 using 44 C-band SAR images of the European Remote Sensing (ERS-1 and ERS-2) satellites. We observe the ground displacement rate of Las Vegas is in the range of ?19 to 8 mm/year in the same period. We also cross-compare PSInSAR and SBAS using mean LOS velocity and time-series. The comparison shows a correlation coefficient of 0.9467 in the case of mean LOS velocity. Along this study, we validate the ground deformation results from the satellite with the ground water depth of Las Vegas using time-series analysis, and the InSAR measurements show similar patterns with ground water data. 相似文献
53.
Single-frequency precise point positioning (SF-PPP) is a potential precise positioning technique due to the advantages of the high accuracy in positioning after convergence and the low cost in operation. However, there are still challenges limiting its applications at present, such as the long convergence time, the low reliability, and the poor satellite availability and continuity in kinematic applications. In recent years, the achievements in the dual-frequency PPP have confirmed that its performance can be significantly enhanced by employing the slant ionospheric delay and receiver differential code bias (DCB) constraint model, and the multi-constellation Global Navigation Satellite Systems (GNSS) data. Accordingly, we introduce the slant ionospheric delay and receiver DCB constraint model, and the multi-GNSS data in SF-PPP modular together. In order to further overcome the drawbacks of SF-PPP in terms of reliability, continuity, and accuracy in the signal easily blocking environments, the inertial measurements are also adopted in this paper. Finally, we form a new approach to tightly integrate the multi-GNSS single-frequency observations and inertial measurements together to ameliorate the performance of the ionospheric delay and receiver DCB-constrained SF-PPP. In such model, the inter-system bias between each two GNSS systems, the inter-frequency bias between each two GLONASS frequencies, the hardware errors of the inertial sensors, the slant ionospheric delays of each user-satellite pair, and the receiver DCB are estimated together with other parameters in a unique Kalman filter. To demonstrate its performance, the multi-GNSS and low-cost inertial data from a land-borne experiment are analyzed. The results indicate that visible positioning improvements in terms of accuracy, continuity, and reliability can be achieved in both open-sky and complex conditions while using the proposed model in this study compared to the conventional GPS SF-PPP. 相似文献
54.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%. 相似文献
55.
Representing the spherical harmonic spectrum of a field on the sphere in terms of its amplitude and phase is termed as its polar form. In this study, we look at how the amplitude and phase are affected by linear low-pass filtering. The impact of filtering on amplitude is well understood, but that on phase has not been studied previously. Here, we demonstrate that a certain class of filters only affect the amplitude of the spherical harmonic spectrum and not the phase, but the others affect both the amplitude and phase. Further, we also demonstrate that the filtered phase helps in ascertaining the efficacy of decorrelation filters used in the grace community. 相似文献
56.
Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data 总被引:1,自引:0,他引:1
Karina Wilgan Fabian Hurter Alain Geiger Witold Rohm Jarosław Bosy 《Journal of Geodesy》2017,91(2):117-134
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations. 相似文献
57.
New spherical integral formulas between components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second- and third-order gravitational tensors. Initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are also summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (1) vertical-vertical, (2) vertical-horizontal and (3) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the consistency of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy. 相似文献
58.
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne–Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases. 相似文献
59.
The 3D similarity coordinate transformation with the Gauss–Helmert error model is investigated. The first-order error analysis of an analytical least-squares solution to this problem is developed in detail. While additive errors are assumed in the translation and scale estimates, a 3 × 1 multiplicative error vector is defined to effectively parameterize the rotation matrix estimation error. The propagation of the errors in the coordinate measurements to the errors in the estimated transformation parameters is derived step-by-step, and the formulae for calculating the variance–covariance matrix of the estimated parameters are presented. 相似文献
60.
Effects of rapidly changing ionospheric weather are critical in high accuracy positioning, navigation, and communication applications. A system used to construct the global total electron content (TEC) distribution for monitoring the ionospheric weather in near-real time is needed in the modern society. Here we build the TEC map named Taiwan Ionosphere Group for Education and Research (TIGER) Global Ionospheric Map (GIM) from observations of ground-based GNSS receivers and space-based FORMOSAT-3/COSMIC (F3/C) GPS radio occultation observations using the spherical harmonic expansion and Kalman filter update formula. The TIGER GIM (TGIM) will be published in near-real time of 4-h delay with a spatial resolution of 2.5° in latitude and 5° in longitude and a high temporal resolution of every 5 min. The F3/C TEC results in an improvement on the GIM of about 15.5%, especially over the ocean areas. The TGIM highly correlates with the GIMs published by other international organizations. Therefore, the routinely published TGIM in near-real time is not only for communication, positioning, and navigation applications but also for monitoring and scientific study of ionospheric weathers, such as magnetic storms and seismo-ionospheric anomalies. 相似文献