首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   16篇
  国内免费   2篇
大气科学   14篇
地球物理   34篇
地质学   125篇
海洋学   27篇
天文学   40篇
自然地理   16篇
  2022年   1篇
  2021年   11篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   25篇
  2012年   14篇
  2011年   14篇
  2010年   17篇
  2009年   21篇
  2008年   11篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1998年   6篇
  1997年   6篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   6篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1967年   1篇
  1955年   1篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
31.
Hekla volcano is a major producer of large, widespread silicic tephras. About 3000 years ago, the dominant eruption mode shifted from infrequent large (>1 km3) to more frequent moderate (<1 km3) eruptions. In the following two millennia ≥20 explosive silicic-to-intermediate eruptions occurred, and six or more basaltic. Three categories can be identified with dacite/andesite to basaltic andesite in the oldest eruptions through basaltic andesite to basalt in the youngest eruptions. Ten tephra layers of the first category have distinct field characteristics: a pale lower unit and a dark upper unit (two coloured or TC-layers). Colour separation is sharp indicating a stratified magma chamber origin. The lower unit is dominantly andesitic (61–63% SiO2), while the upper unit is basaltic andesite (53–57% SiO2). Volumes of the eight largest TC-layers range from 0.2 to 0.7 km3 as freshly fallen. Radiocarbon and soil accumulation rate dates constrain the TC-layers to between 3000 and 2200 years ago. Two of these (~2890 and ~2920 b2k) are likely to occur overseas. Low SiO2 in the last erupted tephra of the TC-layers is comparable to that of historical Hekla lavas, implying a final effusive phase. The Hekla edifice may, consequently, be younger than 3000 years.  相似文献   
32.
33.
This paper gives new insight into the precipitation sequences in six playa basins that host microbial mats. The study basins are distributed across two evaporitic endorheic drainage systems located in the Central part of Spain with markedly different hydrochemistry and mineralogy. One group, in the north, consists of highly alkaline, brackish to saline lakes containing a high concentration of chloride with dominant carbonate over sulphates. A second group of lakes are mesosaline to hypersaline, with sulphate the dominant anion over chloride. Mineral assemblages identified in both contain several phases that provide evidence for mixed carbonate-sulphate precipitation pathways, in the north, and sulphate-dominated pathways in the south. Regardless of their ionic composition, saline lakes support thin veneers of microbial mats which, by integrating several lines of evidence (hydrochemical and physical analyses, statistical analyses of ions, mineralogical assemblages, textural relationships among mineral phases and microbial mats) are shown to modify the chemical behavior of the evaporitic sediment and promote the formation of carbonates and sulphates from Ca-poor waters with high Mg/Ca ratios. Geochemical changes induced in the environment surrounding the microorganism favor the nucleation of hydrated Mg-carbonates (hydromagnesite and nesquehonite), calcite and dolomite. Simultaneously, the microbial mats provide nucleation sites for gypsum crystals, where they are subjected to episodic stages of growth and dissolution due to saturation indices close to zero. In addition, the bubbles produced by the metabolic activities of microorganisms are shown to promote the precipitation of hydrated Mg-sulphates, despite permanent subsaturation levels. Although common in the studied playa basins, this effect has not been previously reported and is key to understanding sulphate behavior and distribution. Modern and natural evaporitic microbial environments are important analogs for understanding brine evolution and mineral precipitation pathways in shallow water settings that have existed since the Archean on Earth and perhaps on Mars.  相似文献   
34.
35.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
36.
Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r 2?=?0.96; p?=?0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt marshes are already experiencing deterioration and fragmentation in response to sea level rise and may not be stable as tidal flooding increases in the future.  相似文献   
37.
38.
Near-seabed (<50 m) sediments were studied throughout the Irish sector of the Rockall Trough (ca. 123,000 km2) based on a combined analysis of shallow seismic (3.5 kHz) and multibeam swath data acquired by the Irish National Seabed Survey and reprocessed here at higher resolution. The detailed identification of seven acoustic facies served to classify the Rockall Trough into six main sedimentary provinces, incorporating the well-known Feni Drift, Donegal-Barra Fan and Rockall Bank mass flow. In the northern part of the study area, extensive mass transport deposits from both flanks of the trough are the dominant depositional features. Debris flow deposits formed by ice streaming of the British-Irish ice sheet characterise most of the Donegal-Barra Fan, whereas turbidite deposition occurs towards the toe of the fan. On the western margin of the trough, the post-glacial Rockall Bank mass flow deposit displays a rough topography with no acoustic penetration. Several failure scarps are visible on the flank of the bank where the mass flow originated, and pass downslope into large sediment lobes and smaller debris flow deposits. Smaller-scale mass transport deposits were also discovered close to some canyons indenting the eastern slope. High seismic penetration characterises the Feni contourite drift deposit, and precise mapping of its geographical extent shows that it is considerably wider than previously reported. The sediment waves that drape this drift are interpreted as predominantly relict features, and their varied geometry suggests a complex oceanographic regime. In the deeper part of the trough, the data reveal novel evidence of the widespread occurrence (about 12,000 km2) of distinct seismic and backscatter signatures indicating the possible presence of fluid escape structures within fine-grained sediments of mixed contouritic, hemipelagic and turbiditic origin. Sediment overloading and increased pore pressure resulting from extensive mass wasting to the north of the area is a likely cause of dewatering-rooted fluid migration towards the seabed, but further investigations are required to confirm the nature and origin of such fluids in the Rockall Trough.  相似文献   
39.
The continental margin offshore of western Ireland offers an opportunity to study the effects of glacial forcing on the morphology and sediment architecture of a mid-latitude margin. High resolution multibeam bathymetry and backscatter data, combined with shallow seismic and TOBI deep-towed side-scan sonar profiles, provide the basis for this study and allow a detailed geomorphological interpretation of the northwest Irish continental margin. Several features, including submarine mass failures, canyon systems and escarpments, are identified in the Rockall Trough for the first time. A new physiographic classification of the Irish margin is proposed and linked to the impact of glaciations along the margin. Correlation of the position and dimensions of moraines on the continental shelf with the level of canyon evolution suggests that the sediment and meltwater delivered by the British–Irish Ice Sheet played a fundamental role in shaping the margin including the upslope development of some of the canyon systems. The glacial influence is also suggested by the variable extent and backscatter signal of sedimentary lobes associated with the canyons. These lobes provide an indirect measurement of the amount of glaciogenic sediment delivered by the ice sheet into the Rockall Trough during the last glacial maximum. None of the sedimentary lobes demonstrates notable relief, indicating that the amount of glaciogenic sediment delivered by the British–Irish Ice Sheet into the Rockall Trough was limited. Their southward disappearance suggests a more restricted BIIS, which did not reach the shelf edge south of 54°23′ N. The various slope styles observed on the Irish margin represent snapshots of the progressive stages of slope development for a glacially-influenced passive margin and may provide a predictive model for the evolution of other such margins.  相似文献   
40.
ABSTRACT

The present study is based on field exploration and production records. The producing formation consists of consolidated continental sediments which are overlain by clays, sands and gravels. No areally extensive aquifers can be distinguished. The only zone of consistently high permeability is associated with a buried channel in the bedrock and is interrupted by a hydraulic barrier. Salt concentrations in the groundwater range from less than 500 ppm to over 2000 ppm. Groundwater temperatures range form 38 °F (3·3 °C) to 41 °F (5·0 °C).

The sustainable yields of individual wells of the three-well field range from 60 igpm to 150 igpm with a combined maximum of 350 igpm. Pumping creates an elongated hydraulic depression which is interrupted by the barrier in one direction and causes major changes in water levels 2 miles distant in the other direction. Short and long-term water-level fluctuations suggest two sources of recharge: direct infiltration and lateral flow.

Significantly different values of transmissivity (T) are computed from production tests of different lengths. Tests of duration of 10 to 500 min, 70 to 130 h, and several months yield values for T, in igpd/ft, of 10,000 to 50,000, 2000 to 6000, and 1300, respectively. From the three methods of attempted yield evaluation the one based on empirical relations between operating pumping rates and drawdowns yields the most satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号