Oxygen isotope studies were carried out across units of a Neoproterozoic nappe system, south of São Francisco Craton. A temperature decrease toward the base of the system is found, consistent with a previously recognized inverted metamorphic pattern. The tectonic contact of the basal unit and the reworked southern São Francisco craton show a steep temperature gradient, suggesting that low temperature thrusting acted as the dominant tectonic process. The contrasts between the δ18O values of the Três Pontas-Varginha and Carmo da Cachoeira nappes and the differences among the samples and minerals are consistent with the preservation of sedimentary isotopic composition during metamorphism. The small differences in the δ18O values between the undeformed and the deformed calc-silicate samples (1.6‰) suggest that the δ18O value of mylonitization fluids was close to that which equilibrated with the metamorphic assemblage. The distinct δ18O values of metapelitic and calc-silicate samples and the great temperature difference from one type to the other indicate that no large-scale fluid interaction processes occurred during metamorphism. Oxygen isotopic estimations of both Três Pontas-Varginha undeformed rocks and Carmo da Cachoeira unaltered equivalents indicate δ18O values of up to 18‰. Comparison between these values and those from the ‘basement’ orthogneisses (8.3–8.5‰) indicates the latter are not sources for the metapelites. 相似文献
East-northeastern Brazil has a wave-dominated, micro- to meso-tidal coast, lying entirely within the southern Atlantic trade wind belt. Integration of geologic mapping, radiocarbon dating and vibracoring data shows that the Quaternary coastal evolution of this area was controlled by three major factors: (1) sea-level history; (2) trade winds; and (3) climate change.
Sea-level history. Along the east-northeastern coast of Brazil, relative sea level has fallen approximately 5 m during the last 5000 y. Correlation of this sea-level history with the evolution of beach-ridge, lagoonal and coastal plain deposits shows that: (1) sea-level rise favours the formation of barrier island—lagoonal systems and the construction of intralagoonal deltas; (2) sea-level lowering is not conductive to barrier island formation. Rather, lagoons and bays become emergent and beach-ridge plains rapidly prograde.
Trade winds. Sediment dispersal systems along the coastal zone of east-northeastern Brazil have been highly persistent since Pleistocene time, as deduced from beach-ridge orientation. This persistence results from the fact that sediment dispersal in wave-dominated settings is ultimately controlled by atmospheric circulation which, for the east-northeastern coast of Brazil is associated with the South Atlantic high-pressure cell. The remarkable stability of this cell through time, has allowed the accumulation of extensive beach-ridge plains at the longshore drift sinks located along the coast.
Climate change. Effects of Quaternary climate changes on coastal sedimentation are twofold. Climate changes may affect rainfall patterns, thus exerting an important control on coastal dune development. Along the coast of northeastern Brazil, active coastal dunes are only present in those areas in which at least four consecutive dry months occur during the year. Mapping of these areas has shown that dune development during the Holocene has been episodic, these episodes being probably controlled by variations in rainfall patterns associated with climate changes. Secondly, despite its overall stability, the position of the high-pressure cell has experienced small shifts in position during the Holocene in response to climate changes. Changes in wind direction associated with these shifts have induced modifications in the coastal dispersion system, which are recorded in the strandplains as small truncations in the beach-ridge alignments.
These results have important implications in understanding accumulation of ancient sandstone shoreline sequences. 相似文献
Landslides - This article describes the behavior of a talus-colluvium deposit up to 70-m thick located in the Serra dos Orgaos, Rio de Janeiro/RJ, Brazil. The monitoring dataset of 13 years... 相似文献
Industrial development, intensive agriculture and fast urbanization have caused the metal contents of soils to increase to many times the allowable limits. To assess this impact on urban and rural soils, we quantified the Cd, Cr, Cu, Pb, Ni and Zn contents of 258 soil samples from the Recife metropolitan region (RMR). The objectives of the study were to estimate the probability of ecological risk, to determine the spatial pattern of the metals’ accumulation in the soil and to identify potential sources for the metals using a multivariate geostatistical approach. Mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in soils were 65.2, 17.9, 16.5, 12.8, 6.3 and 1.5 mg kg?1, respectively. The results demonstrated that the Cd was anthropogenic in origin, the Cr and Ni were lithogenic (natural) in origin and the Cu, Pb and Zn were mixed in origin. Cd contaminated 91% of the samples; the median content of Cd (1.4 mg kg?1) was three times the quality reference value for soil. The Cd contents of sugarcane fields exceeded the allowable limit (3.0 mg kg?1) for agricultural areas. The spatial variability of the metals in the RMR showed that metallurgy, cement production, vehicle exhaust and vehicular traffic were the main sources of metals in urban areas, while phosphate-based fertilizers were the main sources in rural areas. More than 80% of the metropolitan region surveyed in the study was at moderate to high ecological risk. 相似文献
This paper describes the main features related to lateral displacements with depth after successive lateral loading–unloading cycles applied to the top of reinforced-concrete flexible bored piles embedded in naturally bonded residual soil. The bored piles under study have a cylindrical shape, with 0.40-m in diameter and 8.0-m in length. Both bored piles types (P1 and P2) include an embedded steel pipe section in their center as longitudinal steel reinforcements: pile type P1 has another 16 steel rods as steel reinforcement to concrete while pile type P2 has no further steel reinforcement. Pile type P1 has three times as much stiffness (EI) and four and a half times the plastic moment (My) than pile type P2. A similar load–displacement performance was observed at initial loads as for small displacements of both piles. At this initial loading stage, the response of the reinforced concrete piles is a function of the soil characteristics and of a linear elastic pile deformation. During this stage, piles can even be understood as probes for evaluating soil reactions. For larger horizontal displacements, after the concrete section starts undergoing large deformations, approaching the ultimate bending moment, pile behavior and consequently the load–displacement relation starts to diverge for both piles. For pile P1 the values of relevant lateral displacements are extended to about 2.5-m in depth, while for pile P2 lateral displacements are mostly constrained to about 2.0-m in depth. Measurements of horizontal displacements of pile P1 against depth recorded with a slope indicator show that, after unloading, lateral loads at distinct stages (small and near failure loads), exhibits a much higher elastic phase of the system response. An analytical fitting model of soil reaction is proposed based on the measured displacements from slope indicator. The integration of a continuous model proposed for the soil reaction agrees fairly well with the measured displacements up to moments close to plastic limit. Results of load–displacement show that the stiffer pile (P1) was able to mobilize twice as much lateral load compared to pile P2 for a service limit displacement of about 20 mm. The paper shows results that enable the isolation of the structural variable through real scale pile load tests, thus granting understanding of its importance and enabling its quantitative visualization in examples of piles embedded in residual soil sites.
Aquifer systems are an important part of an integrated water resources management plan as foreseen in the European Union’s Water Framework Directive (2000). The sustainable development of these systems demands the use of all available techniques capable of handling the multidisciplinary features of the problems involved. The formulation and resolution of an optimization model is described for a planning and management problem based on the Palmela aquifer (Portugal), developed to supply a given number of demand centres. This problem is solved using one of the latest optimization techniques, the simulated annealing heuristic method, designed to find the optimal solutions while avoiding falling into local optimums. The solution obtained, providing the wells location and the corresponding pumped flows to supply each centre, are analysed taking into account the objective function components and the constraints. It was found that the operation cost is the biggest share of the final cost, and the choice of wells is greatly affected by this fact. Another conclusion is that the solution takes advantage of the economies of scale, that is, it points toward drilling a large capacity well even if this increases the investment cost, rather than drilling several wells, which together will increase the operation costs. 相似文献
The polyphase evolution of the Seridó Belt (NE-Brazil) includes D1 crust formation at 2.3–2.1 Ga, D2 thrust tectonics at 1.9 Ga and crustal reworking by D3 strike-slip shear zones at 600 Ma. Microstructural investigations within mylonites associated with D2 and D3 events were used to constrain the tectono-thermal evolution of the belt. D2 shear zones commenced at deeper crustal levels and high amphibolite facies conditions (600–650 °C) through grain boundary migration, subgrain rotation and operation of quartz c-prism slip. Continued shearing and exhumation of the terrain forced the re-equilibration of high-T fabrics and the switching of slip systems from c-prism to positive and negative a-rhombs. During D3, enhancement of ductility by dissipation of heat that came from syn-D3 granites developed wide belts of amphibolite facies mylonites. Continued shearing, uplift and cooling of the region induced D3 shear zones to act in ductile-brittle regimes, marked by fracturing and development of thinner belts of greenschist facies mylonites. During this event, switching from a-prism to a-basal slip indicates a thermal path from 600 to 350 °C. Therefore, microstructures and quartz c-axis fabrics in polydeformed rocks from the Seridó Belt preserve the record of two major events, which includes contrasting deformation mechanisms and thermal paths. 相似文献
Natural Hazards - The ability to forecast extreme precipitation events has become increasingly important over the last decades due to their significant impacts on society and properties. In this... 相似文献