首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11178篇
  免费   1648篇
  国内免费   1643篇
测绘学   590篇
大气科学   1905篇
地球物理   3545篇
地质学   5036篇
海洋学   1049篇
天文学   630篇
综合类   885篇
自然地理   829篇
  2024年   31篇
  2023年   97篇
  2022年   289篇
  2021年   319篇
  2020年   255篇
  2019年   292篇
  2018年   744篇
  2017年   667篇
  2016年   603篇
  2015年   451篇
  2014年   471篇
  2013年   435篇
  2012年   950篇
  2011年   760篇
  2010年   430篇
  2009年   509篇
  2008年   468篇
  2007年   428篇
  2006年   367篇
  2005年   1079篇
  2004年   1042篇
  2003年   824篇
  2002年   366篇
  2001年   266篇
  2000年   247篇
  1999年   304篇
  1998年   259篇
  1997年   217篇
  1996年   230篇
  1995年   160篇
  1994年   168篇
  1993年   167篇
  1992年   137篇
  1991年   86篇
  1990年   70篇
  1989年   58篇
  1988年   51篇
  1987年   26篇
  1986年   27篇
  1985年   16篇
  1984年   15篇
  1983年   11篇
  1982年   9篇
  1981年   11篇
  1980年   6篇
  1978年   4篇
  1976年   4篇
  1975年   5篇
  1965年   3篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
NotesEcologicalstudyofmacrobenthosinFuqingBay¥//INTRODUCTIONTheecologicalstudyOfmacrobenthoshasnotbeenrePOrtedthoughthemarine...  相似文献   
52.
海水硬骨鱼白点病组织病理学研究   总被引:2,自引:0,他引:2  
在光镜水平下研究了刺激隐核虫寄生黄鳍鲷和真鲷后引起宿主组织病理学的变化。该寄生虫可在宿主皮肤、鳃上皮和舌上皮的组织内寄生。与正常组织相比,被寄生的皮肤表皮层明显增厚、粗糙,其增厚部分主要是粘液细胞层、表皮层与真皮层间的联系被破坏。寄生囊内有较大的空隙。虫体内含有大量的宿主细胞残骸。由于寄生虫的感染,使得非寄生部位的脏器也出现某些病理变化:肝细胞萎缩,窦状隙增大;脾肾内都有颗粒性沉积。本研究结果还与淡水“白点”病引起的病理组织学变化进行了比较。  相似文献   
53.
The structural framework of the southern part of the Shackleton Fracture Zone has been investigated through the analysis of a 130-km-long multichannel seismic reflection profile acquired orthogonally to the fracture zone near 60° S. The Shackleton Fracture Zone is a 800-km-long, mostly rectilinear and pronounced bathymetric lineation joining the westernmost South Scotia Ridge to southern South America south of Cape Horn, separating the western Scotia Sea plate from the Antarctic plate. Conventional processing applied to the seismic data outlines the main structures of the Shackleton Fracture Zone, but only the use of enhanced techniques, such as accurate velocity analyses and pre-stack depth migration, provides a good definition of the acoustic basement and the architecture of the sedimentary sequences. In particular, a strong and mostly continuous reflector found at about 8.0 s two-way traveltime is very clear across the entire section and is interpreted as the Moho discontinuity. Data show a complex system of troughs developed along the eastern flank of the crustal ridge, containing tilted and rotated blocks, and the presence of a prominent listric normal fault developed within the oceanic crust. Positive flower structures developed within the oceanic basement indicate strike-slip tectonism and partial reactivation of pre-existing faults. Present-day tectonic activity is found mostly in correspondence to the relief, whereas fault-induced deformation is negligible across the entire trough system. This indicates that the E–W-directed stress regime present in the Drake Passage region is mainly dissipated along a narrow zone within the Shackleton Ridge axis. A reappraisal of all available magnetic anomaly identifications in the western Scotia Sea and in the former Phoenix plate, in conjunction with new magnetic profiles acquired to the east of the Shackleton Fracture Zone off the Tierra del Fuego continental margin, has allowed us to propose a simple reconstruction of Shackleton Fracture Zone development in the general context of the Drake Passage opening.  相似文献   
54.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
55.
Changes in the concentration of total lipid and fatty acids (FAs) during the decomposition of mangrove leaves were investigated by field experiments using yellow leaves of Bruguiera gymnorrhiza (L.) Lamk. and Kandelia candel (L.) Druce, in order to quantify mangrove contribution to lipid and fatty acid inputs to marine sediments. Total lipid and total FA in the fresh (green and yellow) and decomposing leaves of both species were significantly higher during winter than summer. During decomposition, total lipid content and FA concentration, in particular branched chain fatty acids (BrFAs) and bacterial fatty acids (BFAs), increased to a maximum concentration in 45 days during winter and in 17 days during summer. Lipids were lost faster in K. candel leaf detritus than in B. gymnorrhiza leaf detritus in which >90% of the total lipid original weight was lost during the summer experiment and <60% during the winter experiment. The changes in the concentrations of total lipids and FAs in the decomposing leaves also indicate that mangrove leaves are significant sources of fatty acids and probably other lipid compounds to estuarine ecosystems and that tidal waters transport the lipids and FAs adsorbed to particulate matter from mangroves to adjacent estuarine sediments and the ocean.  相似文献   
56.
A three-dimensional, multi-level model was used to study the energy dissipation of semidiurnal internal Kelvin waves due to their interaction with bottom topography. A simplified topography consisting of a channel with an additional shallow bay was used to clarify the wave’s scattering process. When the first mode semidiurnal internal wave given at an open boundary arrives at the bay mouth, higher-mode internal waves are generated at a step bottom of the bay mouth. As a result, the energy of the first mode internal Kelvin wave is effectively decayed. The decay rate of the internal Kelvin wave depends on both the width and length of the additional bay. The maximum decay rate was found when a resonance condition occurs the bay, that is, the bay length is equal to a quarter of wave length of the first mode internal wave on the shallow region. The decay rate in the wide bay cases is higher than that in a narrow case, due to a contribution from the scattering due to the Poincare wave that emanates from the corners of the bay head. The decay rate with the additional bay is 1.1–1.8 times that of the case without the additional bay. The decay rate due to the scattering process is found to be of the same order as that of the internal and bottom friction.  相似文献   
57.
In this study we test Talley's hypothesis that Oyashio winter mixed-layer water (26.5–26.6σ θ) increases its density to produce the North Pacific Intermediate Water (NPIW) salinity minimum (26.7– 26.8σθ) in the Mixed Water Region, assuming a combination of cabbeling and double diffusion. The possible density change of Oyashio winter mixed-layer water is discussed using an instantaneous ratio of the change of temperature and salinity along any particular intrusion (R l ). We estimate the range of R l DD required to convert Oyashio winter mixed-layer water to the NPIW salinity minimum due to double diffusion, and then assume double-diffusive intrusions as this conversion mechanism. A double-diffusive intrusion model is used to estimate R l DD in a situation where salt fingering dominates vertical mixing, as well as to determine whether Oyashio winter mixed-layer water can become the NPIW salinity minimum. Possible density changes are estimated from the model R l DD by assuming the amount of density change due to cabbeling. From these results, we conclude that Oyashio winter mixed-layer water contributes to a freshening of the lighter layer of the NPIW salinity minimum (around 26.70σθ) in the MWR.  相似文献   
58.
The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.  相似文献   
59.
K. D. Do  J. Pan  Z. P. Jiang   《Ocean Engineering》2003,30(17):2201-2225
This paper addresses an important problem in ship control application—the robust stabilization of underactuated ships on a linear course with comfort. Specifically, we develop a multivariable controller to stabilize ocean surface ships without a sway actuator on a linear course and to reduce roll and pitch simultaneously. The controller adapts to unknown parameters of the ship and constant environmental disturbances induced by wave, ocean current and wind. It is also robust to time-varying environmental disturbances, time-varying change in ship parameters and other motions of the ship such as surge and heave. The roll and pitch can be made arbitrarily small while the heading angle and sway are kept to be in reasonably small bounds. The controller development is based on Lyapunov’s direct method and backstepping technique. A Lipschitz continuous projection algorithm is used to update the estimate of the unknown parameters to avoid the parameters’ drift due to time-varying environmental disturbances. Simulations on a full-scale catamaran illustrate the effectiveness of our proposed controller.  相似文献   
60.
A coupled physical–biological model was developed to simulate the low-silicate, high-nitrate, and low-chlorophyll (LSHNLC) conditions in the equatorial Pacific Ocean and used to compute a detailed budget in the Wyrtki box (5°N–5°S, 180–90°W) for the major sources and cycling of nitrogen and silicon in the equatorial Pacific. With the incorporation of biogenic silicon dissolution, NH4 regeneration from organic nitrogen and nitrification of ammonia in the model, we show that silicon recycling in the upper ocean is less efficient than nitrogen. As the major source of nutrients to the equatorial Pacific, the Equatorial Undercurrent provides slightly less Si(OH)4 than NO3 to the upwelling zone, which is defined as 2.5°N–2.5°S. As a result, the equatorial upwelling supplies less Si(OH)4 than NO3 into the euphotic zone in the Wyrtki box, having a Si/N supply ratio of about 0.85 (2.5 vs. 2.96 mmolm−2 day−1). More Si(OH)4 than NO3 is taken up with a Si/N ratio of 1.17 (2.72 vs. 2.33 mmolm−2 day−1) within the euphotic zone. The difference between upwelling supply and biological uptake is balanced by nutrient regeneration and horizontal advection. Excluding regeneration, the net silicate and nitrate uptakes are nearly equal (1.76 vs. 1.84 mmolm−2 day−1). However, biogenic silica export production is slightly higher than organic nitrogen (1.74 vs. 1.59 mmolm−2 day−1) following a 1.1 Si/N ratio. In the central equatorial Pacific, low silicate concentrations limit diatom growth; therefore non-diatom new production accounts for most of the new production. Higher silicate supply in the east maintains elevated diatom growth rates and new production associated with diatoms dominate upwelling zone. In contrast, the new production associated with small phytoplankton is nearly constant or decreases eastward along the equator. The total new production has a higher rate in the east than in the west, following the pattern of surface silicate. This suggests that silicate regulates the diatom production, total new production, and thereby carbon cycle in this area. The modeled mean primary production is 48.4 mmolCm−2 day−1, representing the lower end of direct field measurements, while new production is 15.0 mmolCm−2 day−1, which compares well with previous estimates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号