Natural Hazards - Pedestrian evacuation from buildings during an earthquake needs to consider human behavior and building shaking. This study sets up an indoor evacuation model based on the social... 相似文献
The salinization of freshwater-dependent coastal ecosystems precedes inundation by sea level rise. This type of saltwater intrusion places communities, ecosystems, and infrastructure at substantial risk. Risk perceptions of local residents are an indicator to gauge public support for climate change adaptation planning. Here, we document residential perspectives on the present and future threats posed by saltwater intrusion in a rural, low-lying region in coastal North Carolina, and we compare the spatial distribution of survey responses to physical landscape variables such as distance to coastline, artificial drainage density, elevation, saltwater intrusion vulnerability, and actual salinity measured during a synoptic field survey. We evaluate and discuss the degree of alignment or misalignment between risk perceptions and metrics of exposure to saltwater intrusion. Risk perceptions align well with the physical landscape characteristics, as residents with greater exposure to saltwater intrusion, including those living on low-lying land with high concentrations of artificial drainages, perceive greater risk than people living in low-exposure areas. Uncertainty about threats of saltwater intrusion is greatest among those living at higher elevations, whose properties and communities are less likely to be exposed to high salinity. As rising sea levels, drought, and coastal storms increase the likelihood of saltwater intrusion in coastal regions, integrated assessments of risk perceptions and physical exposure are critical for developing outreach activities and planning adaptation measures.
We present some of the first analyses of the stable isotopic composition of dissolved silicon (Si) in groundwater. The groundwater samples were from the Navajo Sandstone aquifer at Black Mesa, Arizona, USA, and the Si isotope composition of detrital feldspars and secondary clay coatings in the aquifer were also analyzed. Silicon isotope compositions were measured using high-resolution multi-collector inductively coupled mass spectrometry (HR-MC-ICP-MS) (Nu1700 & NuPlasma HR). The quartz dominated bulk rock and feldspar separates have similar δ30Si of −0.09 ± 0.04‰ and −0.15 ± 0.04‰ (±95% SEM), respectively, and clay separates are isotopically lighter by up to 0.4‰ compared to the feldspars. From isotopic mass-balance considerations, co-existing aqueous fluids should have δ30Si values heavier than the primary silicates. Positive δ30Si values were only found in the shallow aquifer, where Si isotopes are most likely fractionated during the dissolution of feldspars and subsequent formation of clay minerals. However, δ30Si decreases along the flow path from 0.56‰ to −1.42‰, representing the most negative dissolved Si isotope composition so far found for natural waters. We speculate that the enrichment in 28Si is due to dissolution of partly secondary clay minerals and low-temperature silcretes in the Navajo Sandstone. The discovery of the large range and systematic shifts of δ30Si values along a groundwater flow path illustrates the potential utility of stable Si isotopes for deciphering the Si cycling in sedimentary basins, tracing fluid flow, and evaluating global Si cycle. 相似文献
?znik Lake is a tectonically originated basin mainly controlled by the E–W trending middle strand of the North Anatolian Fault (NAF) system. Pleistocene sediments occurring in front of the faults are well exposed both in the northern and in the southern shorelines of the basin. In this study, two endemic brackish water bivalve species, Didacna subpyramidata Pravoslavkev 1939 and Didacna nov. sp. were found in the oldest terrace of the northern Pleistocene sequence. Having characterized morphology, these species serve as stratigraphic indicators in the regional Pleistocene stratigraphy of the Ponto-Caspian region, and thus are well correlated to the assemblages of the early Khazarian subhorizon (Middle Pleistocene). Hence, these data demonstrate that the early Khazarian brackish water sea covered the study area. Additionally, a model for the formation of the basin is proposed: the ?znik lake basin was a gulf of the former Marmara Sea in the early Khazarian, connecting the Marmara to the Black Sea and the Caspian Sea. The subsequent regional prograding uplifts, main dextral strike-slip fault and many normal faults of the NAF Zone cut off the marine connections to the basin, leading to its present location and topographic level. 相似文献