A steady-state, two-dimensional numerical model is used to simulate air temperatures and humidity downwind of a lake at night. Thermal effects of the lake were modelled for the case of moderate and low surface winds under the cold-air advective conditions that occur following the passage of a cold front. Surface temperatures were found to be in good agreement with observations. A comparison of model results with thermal imagery indicated the model successfully predicts the downwind distance for which thermal effects due to the lake are significant. 相似文献
In this age of modern biology, aquatic toxicological research has pursued mechanisms of action of toxicants. This has provided potential tools for ecotoxicologic investigations. However, problems of biocomplexity and issues at higher levels of biological organization remain a challenge. In the 1980s and 1990s and continuing to a lesser extent today, organisms residing in highly contaminated field sites or exposed in the laboratory to calibrated concentrations of individual compounds were carefully analyzed for their responses to priority pollutants. Correlation of biochemical and structural analyses in cultured cells and tissues, as well as the in vivo exposures led to the production and application of biomarkers of exposure and effect and to our awareness of genotoxicity and its chronic manifestations, such as neoplasms, in wild fishes. To gain acceptance of these findings in the greater environmental toxicology community, “validation of the model” versus other, better-established often rodent models, was necessary and became a major focus. Resultant biomarkers were applied to heavily contaminated and reference field sites as part of effects assessment and with investigations following large-scale disasters such as oil spills or industrial accidents.
Over the past 15 years, in the laboratory, small aquarium fish models such as medaka (Oryzias latipes), zebrafish (Danio rerio), platyfish (Xiphophorus species), fathead minnow (Pimephales promelas), and sheepshead minnow (Cyprinodon variegatus) were increasingly used establishing mechanisms of toxicants. Today, the same organisms provide reliable information at higher levels of biological organization relevant to ecotoxicology. We review studies resolving mechanisms of toxicity and discuss ways to address biocomplexity, mixtures of contaminants, and the need to relate individual level responses to populations and communities. 相似文献
Based on classic iterative computation results, new equations to calculate the surface turbulent transfer coefficients are
proposed, which allow for large ratios of the momentum and heat roughness lengths. Compared to the Launiainen scheme, our
proposed scheme generates results closer to classical iterative computations. Under unstable stratification, the relative
error in the Launiainen scheme increases linearly with increasing instability, even exceeding 15%, while the relative error
of the present scheme is always less than 8.5%. Under stable stratification, the Launiainen scheme uses two equations, one
for 0 < RiB ≤ 0.08 and another for 0.08 < RiB ≤ 0.2, and does not consider the condition that RiB > 0.2, while its relative errors in the region 0 < RiB ≤ 0.2 exceed 31 and 24% for momentum and heat transfer coefficients, respectively. In contrast, the present scheme uses only
one equation for 0 < RiB ≤ 0.2 and another equation for RiB > 0.2, and the relative error of the present scheme is always less than 14%. 相似文献
This paper presents a case study on the Mogangling landslide and its characteristics and geological mechanism. The Mogangling landslide is a giant rock landslide located at the intersection of Dadu river and Moxi river. It is a landslide triggered by an earthquake with large magnitude that occurred in 18th century. Based on detailed site investigation, it shows the Mogangling landslide developed in the Kangding complex strata, composed of completely decomposed aggregates of massive-block stone, debris and soil with some gravels, pebbles and sand layer found distributed in front of the landslide. The control factor of the deformation of this landslide is the combined effect of Detuo fault which is located under the slope, and the regional stress formed along structural planes as well as the free surfaces formed by river cutting. Therefore, when the Kangding-Moxi earthquake (Ms =7.7) occurred on 1st June, 1786, due to seismic shaking, topographic amplification effects and back slope effects, the Mogangling landslide occurred. The Dadu River is the most important river for hydropower development in China; large-scale seismic landslides along the Dadu River are the most important geological issue during the construction of hydropower stations. Therefore, this research is important from the point of view of economic and social benefits. 相似文献