首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5191篇
  免费   1085篇
  国内免费   1671篇
测绘学   649篇
大气科学   1052篇
地球物理   1194篇
地质学   2972篇
海洋学   809篇
天文学   190篇
综合类   453篇
自然地理   628篇
  2024年   24篇
  2023年   74篇
  2022年   255篇
  2021年   323篇
  2020年   217篇
  2019年   326篇
  2018年   304篇
  2017年   266篇
  2016年   315篇
  2015年   316篇
  2014年   385篇
  2013年   352篇
  2012年   389篇
  2011年   380篇
  2010年   390篇
  2009年   361篇
  2008年   389篇
  2007年   336篇
  2006年   280篇
  2005年   235篇
  2004年   197篇
  2003年   173篇
  2002年   185篇
  2001年   164篇
  2000年   158篇
  1999年   197篇
  1998年   166篇
  1997年   126篇
  1996年   103篇
  1995年   105篇
  1994年   90篇
  1993年   83篇
  1992年   66篇
  1991年   48篇
  1990年   42篇
  1989年   27篇
  1988年   16篇
  1987年   20篇
  1986年   16篇
  1985年   10篇
  1984年   4篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1980年   4篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1958年   2篇
  1954年   1篇
排序方式: 共有7947条查询结果,搜索用时 421 毫秒
161.
由于对资源矿产的过度开采使得矿山地区(尤其是煤矿)出现了采空区,从而引起地表塌陷等地质灾害。为了深入了解地震方法在采空区调查中的应用效果,从超声波物理模型实验研究出发,论述了物理模型的原理和制作,研究了采空区的地震波场特征,并利用W inse is软件对所采集的二维超声波实验数据进行了处理。由叠偏剖面推断的采空区的位置与实际模型相符,从而验证了超声波采空区物理模型试验是有效的、可信的;同时可以为实际探测采空区提供进一步的理论依据。  相似文献   
162.
评述了微生物技术在地质找矿和矿石冶炼中的研究和应用现状,并结合现代分子生物学的研究进展,着重对核苷酸序列分析、基因探针、DNA重组技术等有望在地质学中进一步应用的分子生物学技术进行了论述,展望了利用微生物的分子鉴定技术和基因探针技术寻找隐伏矿床、利用原生质体融合技术和基因工程创建高效工程菌用于矿石冶炼等方面的应用前景.  相似文献   
163.
The diagnosis of Estherites corrugatus from the basal part of the Coniacian Second Member of the Nenjiang Formation in Nenjiang County, north-east China is revised following the application of a new preparation technique to some of the carapaces and an examination of specimens under a scanning electron microscope, both of which revealed morphological features on the carapace that had not been recognized previously. Restudy of the type species of the two subgenera Estherites (Euestherites) and Estherites (Parestherites) also revealed details of carapace features not seen hitherto. These indicate that they should be separated from Estherites. As a result, Euestherites is upgraded to genus level and Parestherites is placed in synonymy. The importance of Estherites and Euestherites is considered in the context of Late Cretaceous assemblages of these crustaceans and the three conchostracan provinces (South-West, South-East and North China) that are recognized to have been present in China during the Turonian–Santonian period.  相似文献   
164.
Irregularly shaped (IRS) particles widely exist in many engineering and industrial fields. The macro physical and mechanical properties of the particle system are governed by the interaction between the particles in the system. The interaction between IRS particles is more complicated because of their complex geometric shape with extremely irregular and co‐existed concave and convex surfaces. These particles may interlock each other, making the sliding and friction of IRS particles more complex than that of particles with regular shape. In order to study the interaction of IRS particles more efficiently, a refined method of constructing discrete element model based on computed tomography scanning of IRS particles is proposed. Three parameters were introduced to control the accuracy and the number of packing spheres. Subsequently, the inertia tensor of the IRS particle model was optimized. Finally, laboratory and numerical open bottom cylinder tests were carried out to verify the refined modeling method. The influence of particle shape, particle position, and mesoscopic friction coefficient on the interaction of particles was also simulated. It is noteworthy that with the increase of mesoscopic friction coefficient, the fluidity of IRS particle assembly decreases, and intermittent limit equilibrium state may appear. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
165.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
166.
167.
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types (alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10-20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen (N), total potassium (K), and organic carbon (C) in 10-20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P (phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.  相似文献   
168.
Prediction intervals (PIs) are commonly used to quantify the accuracy and precision of a forecast. However, traditional ways to construct PIs typically require strong assumptions about data distribution and involve a large computational burden. Here, we improve upon the recent proposed Lower Upper Bound Estimation method and extend it to a multi‐objective framework. The proposed methods are demonstrated using a real‐world flood forecasting case study for the upper Yangtze River Watershed. Results indicate that the proposed methods are able to efficiently construct appropriate PIs, while outperforming other methods including the widely used Generalized Likelihood Uncertainty Estimation approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
169.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   
170.
Low temperature is an important limiting factor for alpine ecosystems on the Tibetan Plateau. This study is based on data from on-site experimental warming platforms (open top chambers, OTC) at three elevations (4300 m, 4500 m, 4700 m) on the Qinghai-Tibet Plateau. The carbon and nitrogen stoichiometry characteristics of plant communities, both above-ground and below-ground, were observed in three alpine meadow ecosystems in August and September of 2011 and August of 2012. Experimental warming significantly increased above-ground nitrogen content by 21.4% in September 2011 at 4500 m, and reduced above-ground carbon content by 3.9% in August 2012 at 4300 m. Experimental warming significantly increased below-ground carbon content by 5.5% in August 2011 at 4500 m, and the below-ground ratio of carbon to nitrogen by 28.0% in September 2011 at 4300 m, but reduced below-ground nitrogen content by 15.7% in September 2011 at 4700 m, below-ground carbon content by 34.3% in August 2012 at 4700 m, and the below-ground ratio of carbon to nitrogen by 37.9% in August 2012 at 4700 m. Experimental warming had no significant effect on the characteristics of community carbon and nitrogen stoichiometry under other conditions. Therefore, experimental warming had inconsistent effects on the carbon and nitrogen stoichiometry of plant communities at different elevations and during different months. Soil ammonium nitrogen and nitrate nitrogen content were the main factors affecting plant community carbon and nitrogen stoichiometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号