首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28634篇
  免费   68篇
  国内免费   124篇
测绘学   813篇
大气科学   2030篇
地球物理   4647篇
地质学   13678篇
海洋学   1814篇
天文学   4815篇
综合类   162篇
自然地理   867篇
  2023年   18篇
  2022年   30篇
  2021年   31篇
  2020年   28篇
  2019年   40篇
  2018年   3384篇
  2017年   3191篇
  2016年   1878篇
  2015年   208篇
  2014年   205篇
  2013年   220篇
  2012年   1338篇
  2011年   3100篇
  2010年   2933篇
  2009年   3000篇
  2008年   2337篇
  2007年   3053篇
  2006年   247篇
  2005年   643篇
  2004年   519篇
  2003年   591篇
  2002年   356篇
  2001年   106篇
  2000年   113篇
  1999年   80篇
  1998年   77篇
  1997年   87篇
  1996年   75篇
  1995年   46篇
  1994年   31篇
  1993年   57篇
  1992年   34篇
  1991年   42篇
  1990年   27篇
  1989年   34篇
  1988年   36篇
  1987年   42篇
  1986年   52篇
  1985年   41篇
  1984年   45篇
  1983年   43篇
  1982年   46篇
  1981年   48篇
  1980年   52篇
  1979年   35篇
  1977年   20篇
  1976年   25篇
  1975年   23篇
  1974年   20篇
  1973年   23篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
831.
Red mud residue from alumina production has been proposed as an alternative liner material. The chemical and environmental compatibility of red mud upon exposure to representative organic (methanol, heptane, TCE, and acetic acid) and inorganic liquids (CaCl2 and seawater) was studied. Chemical compatibility assays comprised Atterberg limits and sedimentation and hydraulic conductivity tests for red mud interacted with the chemical liquids, whereas the environmental compatibility was assessed through the leaching of metals from red mud as permeated with the liquids. Methanol greatly reduced the plasticity at concentrations ≥80 % by volume, but it did not increase the hydraulic conductivity of compacted red mud. High concentrations (≥60 % v/v) of acetic acid reduced the plasticity and enhanced the sedimentation of red mud. Conversely, acetic acid concentrations ≤40 % caused dispersion, but damaged the hydraulic properties and structure of red mud. The percolation of a pH 2 acetic acid solution did not adversely affect the hydraulic performance of the red mud liner. Neither diluted heptane nor TCE affected the red mud. However, pure organics suppressed the plasticity and induced aggregation of red mud, suggesting a great detrimental effect on red mud liners. The red mud exhibited great resistance to attack by inorganic salt solutions. Some concerning leaching of metals (primarily Al and Cr) occurred as water, acetic acid, and CaCl2 solutions percolated through red mud, but effluent metals concentration quickly dropped to permissible levels. In general, red mud exhibited a high resistance against chemical attack; nevertheless, exposure to low-dielectric-constant organic chemicals should be avoided.  相似文献   
832.
833.
834.
The tectonics and metallogeny of the junction zone between the North Asian craton and Pacific tectonic belt are considered. This zone is characterized by a wide variety of structures superposed on the metamorphic basement, which was formed in the course of a multistage geologic development of the craton from the Precambrian to the Cenozoic. They are related to the craton evolution and its response to the collision and subduction processes in the adjacent orogenic belt, processes in the passive and active continental margins, and plume magmatism. The geological structure of the region includes blocks of metamorphic rocks of the Aldan–Stanovoi shield, Paleoproterozoic volcanogenic troughs, Mesoproterozoic–Neoproterozoic and Early Paleozoic structures of the platform cover, Late Paleozoic volcanic and terrigenous troughs, structures of the Late Mesozoic Okhotsk–Chukotka volcanic belt of the active continental margin, and Late Cretaceous riftogenic structures formed in response to plume magmatism. In total, six metallogenic epochs are recognized in the development of ore mineralization: Archean–Early Paleoproterozoic, Late Paleoproterozoic, Mesoproterozoic, Neoproterozoic, Late Paleozoic, and Late Mesozoic. The minerageny of the junction zone between the craton and Pacific belt is highly diversified, being characterized by distinct evolution in time and space. Each development stage features its own set of mineral resources.  相似文献   
835.
In many petroleum-producing regions, there are not adequate controls to prevent pipeline breaks and spills, and thus soil is frequently contaminated with petroleum hydrocarbons. Different petroleum oil compounds may produce negative impacts on soil fertility. In this study, four fresh crudes, a weathered petroleum, and oils from bioremediated and burned sites were investigated (specific gravities 0.83–1.27). Fourier transform infrared spectroscopy revealed three predominant polar functional groups to be more plentiful in the heavier crudes. The relative abundance of these groups was used to calculate an index that was directly correlated with specific gravity (R 2 = 0.9960) and the percent of asphaltene plus (polars + resins) fractions in the oil (R 2 = 0.9643). This index correlated exponentially to the water repellency caused by petroleum in an alluvial soil (R 2 = 0.9928). Furthermore, extra-heavy oil at a concentration of 10,000 ppm, the maximum allowable oil concentration in the soil that is within regulatory norms in many US states and other countries, and with a specific gravity >1.002, showed severe water repellency. This study presents an alternative for determining soil remediation criteria based on the API gravity of the oil rather than the C-range of the hydrocarbon mixtures, simplifying analytical methods and systematically studying the interaction between the kinds of petroleum mixtures and potential impacts to soil fertility.  相似文献   
836.
In the present study, the effectiveness of physicochemical treatment processes (coagulation and Fenton’s oxidation) was investigated for simulated dairy wastewater (pH = 7.3, chemical oxygen demand (COD) = 3600 mg/l, 5-day biochemical oxygen demand (BOD5) = 1950 mg/l, total Kjeldahl nitrogen (TKN) = 87 mg/l, and total phosphorous (TP) = 14 mg/l). Plain and ballasted coagulation runs were carried out in a jar apparatus, while Fenton’s oxidation was performed in a three-neck glass reactor. Ballasted coagulation caused an enhancement in the settling rate of sludge though no significant enhancement in the removal of organics was observed. Individually, coagulation and Fenton’s oxidation processes resulted in ~67 and 80 % COD removals, respectively, from the wastewater. The sequential treatment exploring coagulation followed by Fenton’s oxidation showed overall COD, BOD5, TKN, and TP reductions of ~93, 97, 84, and 70 %, respectively, from the wastewater. However, a biological post-treatment would be required to achieve the effluent discharge standards. The removal of proteins, fats, and amino acids from wastewater was confirmed from Fourier transform infrared analysis of the settled sludge (obtained after coagulation process). Preliminary cost analysis suggested coagulation and the sequential treatment (i.e. coagulation followed by Fenton’s oxidation) as the preferred options.  相似文献   
837.
The mechanisms and reaction pathway of UV photo-assisted Fenton-like degradation of progesterone in water and wastewater were investigated. The reaction followed the pseudo-first-order kinetics for both the dark Fenton-like and UV photo-Fenton-like processes. The reaction kinetics of the UV photo-assisted process improved with the presence of humic acid (HA) in wastewater, due to the formation of Fe(III)-HA complexes which enhanced Fe(II) production by a ligand-to-metal charge transfer. The UV photo-assisted process reduced the amount of ferric required to completely degrade progesterone by 60 % and lowered the activation energy to 42 kJ/mol compared to 104 kJ/mol for the dark Fenton-like process. Complete degradation of progesterone was achieved through a multi-step process involving several intermediate compounds.  相似文献   
838.
Thiophene-containing solutions were electroreductively desulfurized by a dynamic method. Initially, cyclic voltammetry was utilized to study thiophene electroadsorption from aqueous solution onto a platinum electrode surface and also to investigate the thiophene electroreductive behavior. Then, the solution was desulfurized via a square wave potentiometry method. The objective of this study was to find the optimal conditions. In this regard, the best adsorption potential, electroreduction potential, and square wave frequency were found to be ?0.54 V, ?0.95 V, and 1 Hz, respectively. Finally, a model fuel (containing 294 part per millions thiophene) was desulfurized by the square wave potentiometry method. Gas chromatography and Fourier transform infrared spectroscopy were used to examine the feed and product solutions. Gas chromatographic measurements revealed that sulfur content decreased to 55 part per millions. Based on the acquired results, electroreductive desulfurization could be designated as an efficient superseded for the commercial hydrodesulfurization process. However, more studies must perform to overcome technical limitations of electroreductive desulfurization technique and to guarantee its reliability.  相似文献   
839.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号