首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24434篇
  免费   172篇
  国内免费   918篇
测绘学   1410篇
大气科学   1988篇
地球物理   4503篇
地质学   11593篇
海洋学   1006篇
天文学   1641篇
综合类   2161篇
自然地理   1222篇
  2022年   1篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   4761篇
  2017年   4038篇
  2016年   2578篇
  2015年   235篇
  2014年   81篇
  2013年   29篇
  2012年   989篇
  2011年   2728篇
  2010年   2016篇
  2009年   2311篇
  2008年   1891篇
  2007年   2360篇
  2006年   54篇
  2005年   195篇
  2004年   403篇
  2003年   409篇
  2002年   249篇
  2001年   47篇
  2000年   51篇
  1999年   13篇
  1998年   21篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1981年   21篇
  1980年   19篇
  1976年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Mineralogical and chemical investigations (<2μm clay separates) of shale samples from the Neogene-age Surma Group obtained from four wells (Habiganj-11, Shahbazpur-1, Titas-11, Titas-15) in the Bengal basin, Bangladesh, were carried out in order to reveal the clay mineral composition as reservoir exploration and exploitation requires a good understanding of the clay minerals. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-Ray fluorescence spectrometry (XRF). Mineralogically, the sub-surface Surma Group shales comprise predominantly quartz, plagioclase, illite, chlorite, kaolinite, with lesser amounts of K-feldspar, dolomite and smectite, and minor to trace amounts of calcite, siderite and pyrite. The chemical composition of the <2 μm clay separates also suggests an illite and chlorite-rich composition. With increasing burial depth, the Surma Group shales are enriched in illite. The gradual decreasing of the smectite clays with depth and ultimate disappearance at greater depths (≥ 3000 m) may have been responsible for the presence of the diagenetic illite. Based on the mineralogical composition it is most likely that the illite-chlorite associations together with quartz and feldspar were predominantly detrital in origin and thus reflect the presence of a rapidly-rising source terrain not subjected to intense weathering.  相似文献   
92.
High-pressure Raman studies of methane hydrate were performed using a diamond anvil cell in the pressure range of 0.1–86 GPa at room temperature. Raman spectra of the methane molecules revealed that new softened intramolecular vibration mode of ν 1 appeared at 17 GPa and that the splitting of vibration mode of ν 3 occurred at 15 GPa. The appearance of these two modes indicates that an intermolecular attractive interaction increases between the methane molecules and the host water molecules and between the neighboring methane molecules. These interactions might result in the exceptional stability of a high-pressure structure, a filled ice Ih structure (FIIhS) for methane hydrate, up to 40 GPa. At 40 GPa, a clear change in the slope of the Raman shift versus pressure occurred, and above 40 GPa the Raman shift of the vibration modes increased monotonously up to 86 GPa. A previous XRD study showed that the FIIhS transformed into another new high-pressure structure at 40 GPa. The change in the Raman spectra at 40 GPa may be induced by the transition of the structure.  相似文献   
93.
The hyper-arid conditions prevailing in Agua Verde aquifer in northern Chile make this system the most important water source for nearby towns and mining industries. Due to the growing demand for water in this region, recharge is investigated along with the impact of intense pumping activity in this aquifer. A conceptual model of the hydrogeological system is developed and implemented into a two-dimensional groundwater-flow numerical model. To assess the impact of climate change and groundwater extraction, several scenarios are simulated considering variations in both aquifer recharge and withdrawals. The estimated average groundwater lateral recharge from Precordillera (pre-mountain range) is about 4,482 m3/day. The scenarios that consider an increase of water withdrawal show a non-sustainable groundwater consumption leading to an over-exploitation of the resource, because the outflows surpasses inflows, causing storage depletion. The greater the depletion, the larger the impact of recharge reduction caused by the considered future climate change. This result indicates that the combined effects of such factors may have a severe impact on groundwater availability as found in other groundwater-dependent regions located in arid environments. Furthermore, the scenarios that consider a reduction of the extraction flow rate show that it may be possible to partially alleviate the damage already caused to the aquifer by the continuous extractions since 1974, and it can partially counteract climate change impacts on future groundwater availability caused by a decrease in precipitation (and so in recharge), if the desalination plant in Taltal increases its capacity.  相似文献   
94.
Land subsidence caused by groundwater exploitation in Suzhou City,China   总被引:10,自引:2,他引:10  
Suzhou City, located at the lower reaches of the Yangtze River in southeastern Jiangsu Province, is one of the few cities in China which suffer from severe ground settlement. A research project was carried out to investigate this problem. Geological and hydrogeological studies show that there is a multi-layered aquifer system with three distinct, soft mud layers of marine and lagoonal origins. An examination of historical records of groundwater extraction, water levels, and ground settlement shows that the ground subsidence is associated with the continuously increasing groundwater extraction in the deep, confined aquifer. It is believed that the consolidation of the soft mud layers, especially the third layer which is thick and close to the main pumped aquifer, contributes to the ground settlement. A three-dimensional finite difference numerical model representing the multi-layered aquifer system was developed to study the ground settlement in response to groundwater extraction. By calibrating the model with both the measured groundwater level and ground settlement, the aquifer parameters were estimated. The model outputs fit reasonably well with the observed results, which indicates that the numerical model can reproduce the dynamic processes of both groundwater flow and soil consolidation. The hydraulic conductivity of the third mud layer near the center of the ground settlement has been reduced by over 30% in the last 14 years. The gradual deterioration in the hydraulic conductivity of the mud may have significant adverse effect on the sustainable groundwater resource of the deep confined aquifer, since the recharge from the shallow aquifers through the mud layer is the only source of water to the deep aquifer. An analysis of the spatial distributions of groundwater drawdown and ground settlement shows that the area with maximum drawdown is not necessarily the area with maximum ground settlement due to the occurrence of the soft mud layer. A simple reallocation in pumping rates on the basis of the spatial distribution of the thick mud layer could significantly reduce the ground settlement. Electronic Publication  相似文献   
95.
It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indicate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O–A ratios of HAs, TOCs and HA yields of bulk soil samples, nevertheless, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O–A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and characteristics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution characteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the different distributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.  相似文献   
96.
This paper reports petrography, geochemistry and Rb-Sr age data on the rare metal bearing Neoarchean fertile (Nb-Ta) granite at Allapatna and elucidates its petrogenesis and role in Nb-Ta-Li-Be mineralization. The Allapatna granite (AG) intrudes the Tonalitic-Trondhjemitic - Granodioritic (TTG) Peninsular Gneiss and analysed SiO2 (72.3-75.6 wt%), K2O (4.0-5.7wt%), Na2O (3.0-4.4wt%), CaO (0.7-1wt%), MgO (0.13-0.25wt%) and K2O/Na2O (>1) indicating evolved nature. The presence of muscovite, biotite and garnet in the mode, peraluminous nature and high initial 87Sr/86Sr ratio (0.7284±0.0083) attest to their S-type characteristics. Varying Nb/Ta ratio and high Li with moderate abundance of Cs further indicate affinity to Li-Cs-Ta (LCT) type granite-pegmatite system. TheAG showing whole rock Rb-Sr isochron age of 2803± 68 Ma, is the oldest reported fertile granite in India parental to rare metal pegmatites hosting Nb-Ta, Be, and Li resources. Partial melting of a mixed source consisting of both basement TTG rocks and metapelites has generated such type of granitic magma. Fractionation of such granitic magma possibly has given rise to the rare metal (Ta-Nb-Li-Be) bearing pegmatites intruding the nearby schist belt.  相似文献   
97.
Calcite was synthesized by four methods, and the luminescence decay-time was measured for nine samples before and after heating hydrothermally in the temperature range 200–400°C. Decay-time data were collected between room temperature and approximately 15 K. The decay time at room temperature is approximately 50 ms, with little difference between a given calcite before and after hydrothermal treatment. The decay time at 15 K is always greater than at room temperature as the effect of thermal quenching diminishes. Differences in decay time before and after heating are more apparent at low temperature owing to this reduction in thermal quenching. The decay time decreased significantly in two samples, and an increase in decay time was observed in the remaining seven samples following heating. Among the latter group, the change in decay time was insignificant in three samples. The results are compared with previous data in which it was shown that the effect of heating is to increase the intensity of luminescence.  相似文献   
98.
Here we report iron (Fe) isotopic data of three pure Fe solution standards (IRMM-014, GSB Fe, and NIST 3126a) and five widely used geological reference materials (RMs) from the United States Geological Survey and Geological Survey of Japan obtained on a Neptune Plus multi-collector–inductively coupled plasma–mass spectrometer (MC-ICP-MS) in our laboratory over the past 3 years. The instrumental mass bias was corrected by three independent methods: sample-standard bracketing (SSB), Ni doping?+?SSB, and 57Fe–58Fe double spike?+?SSB. Measurements reveal that both the Ni doping and double spike methods helped calibrate short-term fluctuations in mass bias. Collectively, almost all measurements of RMs yielded δ56Fe within?±?0.05 of recommended values, provided that each sample was measured four times on MC-ICP-MS. For the first time, new recommended values for NIST SRM3126a are reported (δ56Fe?=?0.363?±?0.006, 2SE, 95% CI; and δ57Fe?=?0.534?±?0.010, 2SE).  相似文献   
99.
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgOvs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th–Sc–Zr/10, La–Th–Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V–Ni–Th ?10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ? suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.  相似文献   
100.
A careful selection of waste dumpsites, particularly hazardous ones, is very important for sustainable water resources management. Several laboratory experiments were carried out on the field samples to study adsorption capacity using p-dichlorobenzene (a solvent used in various industrial processes) as the test contaminant. The effect of parameters such as organic matter, clay, and iron and aluminium oxides, which are known to influence the soil adsorption capacity, are studied in the present work. Several soil samples from the Patancheru Industrial Area (Hyderabad, India) were collected and characterized. Only three soils, which had a comparatively high percentage of organic matter, clay, iron and aluminium oxide contents were used for the adsorption studies. The results clearly indicated a decrease in the adsorption capacity of the soils by as much as 75% when organic matter was removed. The other parameters such as clay and iron and aluminium oxides also play an important role in adsorption (57 and 39.8% reduction respectively). It was observed that out of the selected factors organic matter in the soils has the maximum effect regarding the adsorption of p-dichlorobenzene. Since the selected soils contain comparatively more organic matter, clay and iron and aluminium oxides in the selected industrial area, these can be used as sites for dumping hazardous waste, which can be further treated by methods like bioremediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号