首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   3篇
测绘学   1篇
大气科学   4篇
地球物理   24篇
地质学   20篇
海洋学   7篇
天文学   15篇
自然地理   9篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   10篇
  2010年   4篇
  2009年   7篇
  2008年   12篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1979年   1篇
排序方式: 共有80条查询结果,搜索用时 250 毫秒
31.
To understand the initial reactions of granite in a CO2-saturated hydrothermal system, experiments were conducted using a batch-type autoclave over a temperature range of 100–350 °C at up to 250 bar and numerical computations of phase equilibria based on the experimental results were carried out. The experiments showed that the dissolution of granite and the deposition of secondary minerals were encouraged by the addition of CO2. Solution chemistry and examination of the granite’s surface texture suggested that its initial dissolution is characterized by the release of Na and Ca (from the dissolution of plagioclase) and that initial precipitation occurs by deposition of some secondary minerals on to plagioclase and/or biotite in the CO2-saturated system. However, the effect of CO2 was small at 350 °C owing to the low activity of H2CO3. According to EDX analysis and numerical phase equilibrium calculations, the secondary minerals formed might be kaolinite, muscovite, smectite and calcite. That is, the granite as a whole might have the potential to take-up dissolved CO2. The results suggest that the alteration of granite under CO2-saturated hydrothermal conditions has the potential to capture CO2 when it is injected at moderate temperatures (150–250 °C) into granite-hosted rock masses.  相似文献   
32.
The mechanism and rate of hydration of rhyolitic glass during weathering were studied. Doubly polished thin sections of two rhyolites with different duration of weathering (Ohsawa lava: 26,000 yr, Awanomikoto lava: 52,000 yr) were prepared. Optical microscope observation showed that altered layers had developed along the glass surfaces. IR spectral line profile analysis was conducted on the glass sections from the surface to the interior for a length of 250 μm and the contents of molecular H2O (H2Om), OH species (OH) and total water (H2Ot) were determined. The diffusion profile of H2Om in Ohsawa lava extends beyond the layer observed by optical microscope. The content of H2Om in the hydrated region is much higher than that of OH species. Thus, the reaction from H2Om to OH appears to be little and H2Om is the dominant water species moving into the glass during weathering. Based on the concentration profiles, the diffusion coefficients of H2Om(DH2Om) and H2Ot(DH2Ot) were determined to be 2.8 × 10−10 and 3.4 × 10−10 μm2 s−1 for Ohsawa lava, and 5.2 × 10−11 and 4.1 × 10−11 μm2 s−1 for Awanomikoto lava, respectively. The obtained DH2Om during weathering are more than 2-3 orders of magnitude larger than the diffusion coefficient at ∼20 °C that is extrapolated from the diffusivity data for >400 °C. This might suggest that the mechanism of water transport is different at weathering conditions and >400 °C.  相似文献   
33.
Based on both major and trace element chemistry, the occurrence of the intergranular component in mantle-derived xenoliths from far eastern Russia has been constrained. Whole-rock trace element measurements of one xenolith show apparent negative anomalies in Ce, Th, and high field strength elements on normalized trace element patterns. The trace element pattern of the whole rock differs from those of constituent minerals, indicating that the anomalies in the whole rock are attributable to the presence of an intergranular component. That assumption was confirmed using in situ analysis of trace elements in the intergranular substance and melt inclusion using laser ablation inductively coupled plasma–mass spectrometry. Both the intergranular component and the melt inclusions have identical trace element patterns, which mean that these materials are a cognate metasomatizing agent. The anomalies are regarded as mantle metasomatism related to an aqueous fluid. Hydrous minerals were observed on the wall of the melt inclusions using micro-Raman spectroscopy, indicating that the melt inclusions contained a large amount of water. Thus, this study reveals a trace element composition of a hydrous metasomatizing agent in the mantle.  相似文献   
34.
We describe the calibration, measurements and data reduction, ofthe dark current of the ISOCAM/LW detector. We point-out theexistence of two significant drifts of the LW dark-current, onethroughout the ISO mission, on a timescale of days, another within each single revolution, on a timescale of hours. We alsoshow the existence of a dependence of the dark current on thetemperature of the ISOCAM detector.By characterizing all these effects through polynomial fittings,we build a model for the LW calibration dark, that depends onthe epoch of observation (parametrized with the revolutionnumber and the time elapsed in that given revolution since theactivation) and on the temperature of the ISOCAM detector. Themodel parameters are tuned for each of ISOCAM/LW pixel.We show that the modelling is very effective in taking intoaccount the dark-current variations and allows a much cleanerdark subtraction than using a brute average of severalcalibration dark images.The residuals of the LW model-dark subtraction are, on average,similar to the pre-launch expectation.  相似文献   
35.
Detailed quantitative cathodoluminescence (CL) imaging analysis was carried out for radiation-damage halos observed by CL (CL halo) created in natural quartz by implantation of 4 MeV He+ ions. The band of CL halo was approximately 14 μm in width and was constant for any He+ ion dose. The width of the halo is consistent with the theoretical range of 4He ions in quartz. A quantitative response of CL intensity to He+ ion dose was obtained, leading to the application of CL halos to geodosimetrical use. The CL intensity increases exponentially in the luminescent band from the implantation surface to the inside, until it reaches a maximum at 14 μm depth, with a rapid decrease beyond this point. This result is as predicted by Bragg's law, although we find some differences between the CL intensity and the theoretical stopping power.  相似文献   
36.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   
37.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   
38.
Photosynthetic influences on tufa stromatolite formation and ambient water chemistry were investigated at two well-studied streams depositing tufa in Southwestern Japan (Shirokawa and Shimokuraida). The tufa stromatolites in both streams are composed of fine-grained calcite crystals showing annual lamination, and colonized by a number of filamentous cyanobacteria as well as non-phototrophic bacteria. Microelectrode measurements of pH, O2, and Ca2+ near the stromatolite surface (the diffusive boundary layer; DBL) revealed that the investigated tufa stromatolites are formed by photosynthesis-induced CaCO3 precipitation (PCP): cyanobacterial photosynthesis induces calcite precipitation under light conditions, while respiration of cyanobacteria and non-phototrophic bacteria inhibits precipitation in the dark. The bulk water chemistry at the lower sites of the investigated streams showed the daytime decreases of Ca2+ concentration and alkalinity that was expected for significant influence of PCP, while the other expected change, increased pH, was not observed. In order to examine this discrepancy, a novel approach using semi-in situ microelectrode measurements was applied to perform precise quantitative calculations. The calculation results demonstrated that the observed Ca2+ concentration and alkalinity decreases were caused by PCP, and that the concomitant pH increase was expected to be under the detection level of a conventional pH meter. Although the amount of PCP is supposed to be significantly affected by light intensity, observations in Shimokuraida revealed that the amount of PCP on cloudy day nonetheless accounted for about 80% of that on sunny day. Despite the significant role of PCP for tufa stromatolite formation, PCP accounted for only about 10% of the precipitated calcite in the investigated streams, which indicates that tufa stromatolites, the characteristic deposits in the streams, are responsible for only a small portion of calcite precipitation, and the rest is considered to precipitate inorganically at biofilm-free substrates.  相似文献   
39.
Contamination status of brominated flame retardants (BFRs) and persistent organic pollutants (POPs) in blubber of finless porpoises (Neophocaena phocaenoides) stranded along the coasts of Seto Inland Sea and Omura Bay in Japan were investigated. Levels of PCBs, DDTs and CHLs were significantly higher than those of HCHs, HCB, PBDEs and HBCDs. Concentrations of PBDEs and HBCDs, as well as organochlorine compounds in males increased with body length (p<0.05). Among 14 PBDE congeners analyzed, BDE-47 was the predominant, which is similar to those generally reported in biota. PBDEs, HBCDs and PCBs showed no obvious temporal trend in concentrations during the study period, suggesting continuous environmental release of these chemicals. On the other hand, levels of DDT, CHLs and HCHs have decreased. Concentrations of PCBs in liver trematode infected individuals were significantly higher than those in not infected individuals, implying there could be a relationship between contaminant levels and parasitic infection.  相似文献   
40.
To study the detailed structural and isotopic heterogeneity of the insoluble organic matter (IOM) of the Murchison meteorite, we performed two types of pyrolytic experiments: gradual pyrolysis and stepwise pyrolysis. The pyrolysates from the IOM contained 5 specific organic groups: aliphatic hydrocarbons, aromatic hydrocarbons, sulfur-bearing compounds, nitrogen-bearing compounds, and oxygen-bearing compounds. The release temperatures and the compositions of these pyrolysates demonstrated that the IOM is composed of a thermally unstable part and a thermally stable part. The thermally unstable part mainly served as the linkage and substituent portion that bound the thermally stable part, which was dispersed throughout the IOM. The linkage and substituent portion consisted of aliphatic hydrocarbons from C4 to C8, aromatic hydrocarbons with up to 6 rings, sulfo and thiol groups (the main reservoirs of sulfur in the IOM), and carboxyl and hydroxyl groups (the main reservoirs of oxygen). However, the thermally stable part was composed of polycyclic aromatic hydrocarbons (PAHs) containing nitrogen heterocycles in the IOM. Isotopic data showed that the aliphatic and aromatic hydrocarbons in the linkage and substituent portion were rich in D and 13C, while the thermally stable part was deficient in D and 13C. The structural and isotopic features suggested that the IOM was formed by mixing sulfur- and oxygen-bearing compounds rich in D and 13C (e.g., polar compounds in the interstellar medium (ISM)) and nitrogen-bearing PAHs deficient in D and 13C (e.g., polymerized compounds in the ISM).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号