首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   10篇
  国内免费   9篇
大气科学   18篇
地球物理   56篇
地质学   63篇
海洋学   56篇
天文学   20篇
自然地理   12篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   9篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   12篇
  2012年   12篇
  2011年   12篇
  2010年   8篇
  2009年   15篇
  2008年   7篇
  2007年   12篇
  2006年   7篇
  2005年   3篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   8篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   3篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有225条查询结果,搜索用时 31 毫秒
91.
Analysis of CTD data from four CREAMS expeditions carried out in summers of 1993–1996 produces distinct T-S relationships for the western and eastern Japan Basin, the Ulleung Basin and the Yamato Basin. T-S characteristics are mainly determined by salinity as it changes its horizontal pattern in three layers, which are divided by isotherms of 5°C and 1°C; upper warm water, intermediate water and deep cold water. Upper warm water is most saline in the Ulleung Basin and the Yamato Basin. Salinity of intermediate water is the highest in the eastern Japan Basin. Deep cold water has the highest salinity in the Japan Basin. T-S curves in the western Japan Basin are characterized by a salinity jump around 1.2–1.4°C in the T-S plane, which was previously found off the east coast of Korea associated with the East Sea Intermediate Water (Cho and Kim, 1994). T-S curves for the Japan Basin undergo a large year-to-year variation for water warmer than 0.6°C, which occupies upper 400 m. It is postulated that the year-to-year variation in the Japan Basin is caused by convective overturning in winter. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
92.
新疆阿勒泰地区发育了红柱石-矽线石型递增变质带,由绿泥石-黑云母带、黑云母-石榴石带、石榴石-十字石带、十字石-红柱石带和矽线石带组成,根据石榴石成分环带、变质与变形关系、矿物共生组合演化等特征,将变质作用分为峰前期、峰期和峰后期3个演化阶段。峰前期、峰期为连续的递增变质过程,形成典型的中-低压过渡型递增变质带,峰后期属于退变质过程。据石榴石一斜长石一黑云母-白云母-石英组合内部一致地质温压计估算出峰期温度-压力:T=580℃~670℃,P一0.4GPa~0.5GPa。变质作用演化具有顺时针的PTt轨迹,代表陆壳有一定程度的构造增厚,但幅度不大,没有大规模的陆壳俯冲或拆沉作用,这种增厚可能以陆壳的构造叠置机制为主。总体相当于地体间斜向走滑兼有一定垂直分量的拼合过程的地球动力学机制。  相似文献   
93.
The Hyuga-nada Sea, south-eastern Kyushu, Japan, is located between a strong (Nankai Trough) and a weak interplate coupling zone (Ryukyu Trench). Over the past 400 years this area has only experienced Magnitude 7·5 earthquakes or smaller and associated small-scale tsunamis. However, this short historical record most likely does not include the full range of high magnitude, low frequency giant earthquakes that might have occurred in the region. Thus, it is still unclear whether giant earthquakes and their associated tsunamis have occurred in this region. This paper reports on a prehistoric tsunami deposit discovered in a coastal lowland in south-eastern Kyushu facing the Hyuga-nada Sea. There is a reddish-brown pumiceous layer preserved in a non-marine, organic-rich mud sequence obtained from onshore sediment cores. This layer is recognized as the ca 4600 year old Kirishima-Miike tephra (that is now placed around 4500 years ago) sourced from Mount Kirishima, southern Kyushu. Another whitish pumiceous layer is evident below the Kirishima-Miike tephra in almost all of the sediment cores. A relatively high percentage of marine and brackish diatoms is recorded within this lower pumiceous layer (but not in the surrounding muds or in the overlying Kirishima-Miike tephra), indicating a marine or beach sediment source. Plant material obtained from organic-rich mud immediately below the event layer was dated to ca 4430 to 4710 cal yr bp , providing a limiting-maximum age for this marine incursion event. The presence of marine diatoms below the event layer is probably explained by pre-seismic subsidence. An absence of the resting spore of the planktonic brackish diatom Cheatoceros and the appearance of the freshwater diatom Eunotia serra immediately above the event layer probably represents a marked change to a relatively low-salinity environment. Assuming that there were no significant local geomorphological changes, such as drainage obstruction caused by formation of a new barrier spit, it is considered that co-seismic or immediate post-seismic uplift are the most likely explanations for this notable environmental change. Based on the crustal movements noted before and after the marine incursion, this event is interpreted here as an earthquake-generated tsunami. Moreover, because of these notable seismic crustal movements the tsunamigenic earthquake probably occurred immediately offshore of the study site.  相似文献   
94.
We present a new column chemistry technique for the quantitative separation of heavy lanthanoids by an ultra‐fine‐grained LN resin (20–50 µm) with a specific emphasis on the purification of Er and Yb for their isotopic analysis. To achieve the quantitative separation of Er and Yb within a reasonable timescale, flash column chromatography was applied, where the column was attached to a newly designed vacuum box system, thus accelerating the elution speed by ten times compared with that of the normal column procedure operated by gravity flow. The recovery yields of Er and Yb were confirmed to be approximately 100%, which is important to suppress the effect of the mass‐independent fractionation of the Er and Yb isotopes during chromatography. Additionally, we have developed precise Er and Yb isotope measurements by thermal ionisation mass spectrometry (TIMS) using multistatic and/or dynamic methods. Moreover, in most cases, the Er and Yb isotope compositions of the measured four terrestrial rock samples were indistinguishable from those of the commercially available Er and Yb Alfa Aesar solutions. The new method presented in this work will be useful for future studies on heavy lanthanoids in various geological materials.  相似文献   
95.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   
96.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   
97.
A molecular spectral line survey of the title source detected 166 molecular lines from 18 interstellar molecules in the frequency ranges of 34.25–50.00, 83.50–84.50, and 86.00–91.50 GHz. For each molecule, gaussian decomposition of the velocity components in the transition profiles gave consistent radial velocity and linewidth. Rotation diagrams were drawn for each velocity component.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   
98.
The spatial and temporal distribution of the snow water equivalent (SWE), snow density and snow depth were estimated by a method combining remote sensing technology and degree‐day techniques over a study area of 370 000 km2. The advantages of this simulation model are its simplicity and the availability of degree‐day parameters, which can be successively evaluated by referring to snow area maps created from satellite images. This simulation worked very well for estimating SWE and helped to separate the areas of thin snow cover from heavier snowfall. However, shallow snow in warm regions led to some misjudgments in the snow area maps because of the time lag between when the satellite image was acquired and the simulation itself. Vulnerable areas, where a large variation in the amount of snow affects people's life, could be identified from the differences between heavy and light snow years. This vulnerability stems from a predicted lack of irrigation water for rice production caused by future climate change. The model developed in this study has the potential to contribute to water management activities and decision‐making processes when considering necessary adaptations to future climate change. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
99.
In many mountain regions, large land areas with heterogeneous soils have become ice‐free with the ongoing glacier retreat. On these recently formed proglacial fields, the melt of the remaining glaciers typically drives pronounced diurnal stream level fluctuations that propagate into the riparian zone. This behaviour was measured on the Damma glacier forefield in central Switzerland with stage recorders in the stream and groundwater monitoring wells along four transects. In spite of the large groundwater stage variations, radon measurements in the near‐stream riparian zone indicate that there is little mixing between stream water and groundwater on daily time scales. At all four transects, including both losing and gaining reaches, the groundwater level fluctuations lagged the stream stage variations and were often damped with distance from the stream. Similar behaviours have been modelled using the diffusion equation in coastal regions influenced by tidal sea level variations. We thus tested the ability of such a model to predict groundwater level fluctuations in proglacial fields. The model reproduced several key features of the observed fluctuations at three of four locations, although discrepancies also arise due to non representative input data and model simplifications. Nevertheless, calibration of the model for the individual transects yielded realistic estimates of hydraulic diffusivities between the stream and groundwater monitoring wells. We conclude that studying diurnal groundwater fluctuations can provide important information about the subsurface hydrology of alpine watersheds dominated by glacier melt. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号