首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   5篇
大气科学   13篇
地球物理   16篇
地质学   22篇
海洋学   13篇
天文学   11篇
自然地理   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   7篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   7篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1997年   2篇
  1992年   2篇
  1987年   1篇
  1979年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
51.
52.
Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.  相似文献   
53.
Past studies of the various separable carbonaceous fractions have been unable to account for all of C in primitive chondrites. In particular, up to 20–50% of the C is lost during acid leaching of bulk samples even after the C in carbonates and soluble organic matter is accounted for. To try to better characterize the nature of this “missing C,” we have compared the bulk infrared (IR) absorption spectra of a number of primitive chondrites with those of their previously reported insoluble organic matter (IOM). The aliphatic C–H stretching bands, in particular, allow us to compare the molecular structures of bulk C with that of IOM. The spectral differences between bulk C and IOM reflect “missing C” phases that were lost during acid leaching, although we cannot completely exclude the possibility that the OM was modified after demineralization. Comparing IR spectra of bulk meteorite powder and IOM suggests that the missing C varies in its molecular structure, and that mildly thermally metamorphosed type 3 chondrites tend to be richer in an aliphatic fraction with lower CH2/CH3 ratios, relative to IOM, compared to aqueously altered carbonaceous chondrites (CI/CM/CR). The missing C is most likely released from acid‐labile functional groups, such as esters, acetals, and amides, during demineralization, although it cannot be ruled out that some fraction of the missing C is in small grains that are difficult to recover from suspension, or in water‐soluble compounds trapped in phyllosilicates.  相似文献   
54.
We present in this study the effects of short‐term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent body's heating extent with common cosmothermometers. The kinetics of short‐term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondrites—potential analogues of the target asteroid Ryugu of the Hayabusa2 mission—which had experienced posthydration, short‐duration local heating. In an attempt to understand the effects of short‐term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X‐ray microscopy utilizing X‐ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s?σ* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long‐term internal heating.  相似文献   
55.
Concentrations of radon 222Rn andair pollutants, meteorological parametersnear the surface and vertical profiles of meteorological elements were measured atUchio (Okayama City, Okayama Prefecture, Japan) 12 km north from the coast ofthe Inland Sea of Japan. In the nighttime, the 222Rn concentration increased in the case of weak winds, but did not increase as much in the case of moderate or strong winds, as had been expected. In the daytime, the 222Rn concentrationheld at a slightly higher than average level for the period from sunrise to about 1100 JST. It is considered that this phenomenon is due to a period of morning calm, that is, a transition period from land breeze to sea breeze.NO, which is sensitive to traffic volume,brought information concerning advection.Oxidant concentrations,which reflect the availability of sunlight,acted in the reverse manner to 222Rnconcentrations. Thus, a set of 222Rn and air pollutants could provide useful information regarding the local conditions of the atmospheric boundary layer.  相似文献   
56.
This paper discusses recent progress of onshore active faults studies in Japan, especially since the 1995 destructive Kobe earthquake, when the number of trenching studies, which are essential for the reconstruction of onshore paleoearthquakes, has rapidly increased. The timing and repeat interval of paleoearthquakes are here reviewed for the Miura Peninsula, south of Tokyo and the Awaji Island and Kobe-Osaka area, in central Japan, where trenching have been carried out very intensively in the last few years.  相似文献   
57.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   
58.
Abstract– Distributions of organic functional groups as well as inorganic features were analyzed in the Bells (CM2) carbonaceous chondrite using near‐field infrared (NFIR) spectroscopy. NFIR spectroscopy has recently been developed to enable infrared spectral mapping beyond the optical diffraction limit of conventional Fourier transform infrared microspectroscopy. NFIR spectral mapping of the Bells 300 nm thick sections on Al plates for 7.5 × 7.5 μm2 areas showed some C‐H‐rich areas which were considered to represent the organic‐rich areas. Heterogeneous distributions of organic matter as well as those of inorganic phases such as silicates (Si‐O) were observed with 1 μm spatial resolution. The NFIR mappings of aliphatic C‐H (2960 and 2930 cm?1) and structural OH (3650 cm?1) confirm that organic matter is associated with phyllosilicates as previously suggested. The NFIR mapping method can provide 1 μm spatial distribution of organic functional groups and their association with minerals. High local sensitivity of NFIR enables us to find organic‐rich areas and to characterize them by their aliphatic CH2/CH3 ratios. The aliphatic CH2/CH3 ratio of Bells is slightly higher than Murchison, similar to Orgueil, and lower than literature values of IDPs and cometary dust particles.  相似文献   
59.
The ability of five satellite sensor bands (IKONOS band 4, Terra ASTER bands 3 and 4, and Landsat ETM+ bands 4 and 5) was examined to extract the waterline at coral reef coasts (Majuro Atoll, Marshall Islands) using different wavelength regions (near infrared [NIR] and shortwave infrared [SWIR]) and different spatial resolutions (4, 15, and 30 m). After performing georeferencing and normalization of the images, density slicing was used to extract the waterline. Comparisons of extracted waterline positions with ground-level data for eight transects and global positioning system (GPS) tracks of the island shorelines showed that NIR bands were superior to SWIR bands because of the characteristics of the coral reef coasts, including a lack of foam and suspended sediments (which can affect the NIR wavelength region, if present) and the presence of remnant water on reef flats during low tide (which can affect the SWIR wavelength region). A linear relationship was found between the estimation errors of waterline positions and the spatial resolutions of the NIR sensors. Analysis on estimation errors and image costs showed that Terra ASTER band 3 was the most cost-effective sensor for extracting waterlines with reasonable accuracy. The results serve as general guidelines for using satellite-derived data to estimate intertidal topography and detect and monitor shorelines in coral reef environments.  相似文献   
60.
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a distribution in summer in the East China Sea during 1998–2007 was analyzed. Statistical analysis with K-means clustering technique allowed us to define the proper satellite chlorophyll-a concentration indicating the Changjiang Diluted Water (CDW). The spatial distributions of the higher satellite chlorophyll-a concentrations (>0.48 mg m−3) corresponded well with the distributions of lower salinity CDW (<30–32) every year. Interannual variation of the CDW area, indicated by the high satellite chlorophyll-a, correlated with the interannual variation of the Changjiang summer freshwater discharge. The correlation analysis indicated that the CDW spread eastward in the East China Sea with a time lag of 1 to 2 months after the discharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号