首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   7篇
  国内免费   4篇
测绘学   5篇
大气科学   35篇
地球物理   45篇
地质学   24篇
海洋学   41篇
天文学   4篇
综合类   4篇
自然地理   5篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   6篇
  2018年   11篇
  2017年   8篇
  2016年   14篇
  2015年   7篇
  2014年   16篇
  2013年   16篇
  2012年   9篇
  2011年   5篇
  2010年   4篇
  2009年   12篇
  2008年   10篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  1999年   3篇
  1996年   1篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
11.
Three tree-ring rainfall reconstructions from China and Korea are used in this paper to investigate the East Asian summer monsoon-related precipitation variation over the past 160 years. Statistically, there is no linear correlation on a year-by-year basis between Chinese and Korean monsoon rainfall, but region-wide synchronous variation on a decadal-scale was observed. More rainfall intervals were 1860–1890, 1910–1925, and 1940–1960, and dry or even drought periods were 1890–1910, 1925–1940, and 1960–present. Reconstructions also display that the East Asian summer monsoon precipitation suddenly changed from more into less around mid-1920. These tree-ring precipitation records were also confirmed by Chinese historical dryness/wetness index and Korean historical rain gauge data.  相似文献   
12.
The effect of pre-storm subsurface thermal structure on the intensity of hurricane Katrina (2005) is examined using a regional coupled model. The Estimating Circulation and Climate of Ocean (ECCO) ocean state estimate is used to initialize the ocean component of the coupled model, and the source of deficiencies in the simulation of Katrina intensity is investigated in relation to the initial depth of 26 °C isotherm (D26). The model underestimates the intensity of Katrina partly due to shallow D26 in ECCO. Sensitivity tests with various ECCO initial fields indicate that the correct relationship between intensity and D26 cannot be derived because D26 variability is underestimated in ECCO. A series of idealized experiments is carried out by modifying initial ECCO D26 to match the observed range. A more reasonable relationship between Katrina’s intensity and pre-storm D26 emerges: the intensity is much more sensitive to D26 than to sea surface temperature (SST). Ocean mixed layer process plays a critical role in modulating inner-core SSTs when D26 is deep, reducing mixed layer cooling and lowering the center pressure of the Katrina. Our result lends strong support to the notion that accurate initialization of pre-storm subsurface thermal structure in prediction models is critical for a skillful forecast of intensity of Katrina and likely other intense storms.  相似文献   
13.
Microbial responses to the addition of oil with or without a chemical dispersant were examined in mesocosm and microcosm experiments by using denaturing gradient gel electrophoresis of bacterial ribosomal DNA and direct cell counting. When a water-soluble fraction of oil was added to seawater, increases in cell density were observed in the first 24h, followed by a decrease in abundance and a change in bacterial species composition. After addition of an oil-dispersant mixture, increases in cell density and changes in community structure coincided, and the amount of bacteria remained high. These phenomena also occurred in response to addition of only dispersant. Our results suggest that the chemical dispersant may be used as a nutrient source by some bacterial groups and may directly or indirectly prevent the growth of other bacterial groups.  相似文献   
14.
Air–sea interaction over ocean fronts and eddies   总被引:1,自引:0,他引:1  
Air–sea interaction at ocean fronts and eddies exhibits positive correlation between sea surface temperature (SST), wind speed, and heat fluxes out of the ocean, indicating that the ocean is forcing the atmosphere. This contrasts with larger scale climate modes where the negative correlations suggest that the atmosphere is driving the system. This paper examines the physical processes that lie behind the interaction of sharp SST gradients and the overlying marine atmospheric boundary layer and deeper atmosphere, using high resolution satellite data, field data and numerical models. The importance of different physical mechanisms of atmospheric response to SST gradients, such as the effect of surface stability variations on momentum transfer, pressure gradients, secondary circulations and cloud cover will be assessed. The atmospheric response is known to create small-scale wind stress curl and divergence anomalies, and a discussion of the feedback of these features onto the ocean will also be presented. These processes will be compared and contrasted for different regions such as the Equatorial Front in the Eastern Pacific, and oceanic fronts in mid-latitudes such as the Gulf Stream, Kuroshio, and Agulhas Return Current.  相似文献   
15.
We have reanalyzed the high-resolution spectrum of Titan between 2.87 and 3.12 μm observed with NIRSPEC/Keck II on 2001 Nov. 21 in southern summer, using updated CH3D and C2H6 line-by-line models. From new synthetic spectra, we identify all but a few of the previously unidentified significant absorption spectral features in this wavelength range as due to these two species, both of which had been previously detected by Voyager and ground-based observations at other wavelengths. We also derive opacities and reflectivities of haze particles as functions of altitude for the 2.87-2.92 μm wavelength range, where Titan's atmosphere is partially transparent down to the surface. The extinction per unit altitude is observed to increase from 100 km (∼8 mbar) toward lower altitude. The derived total optical depth is approximately 1.1 for the 2.87-2.92 μm range. At wavelengths increasing beyond 2.92 μm the haze layers become much more optically thick, and the surface is rapidly hidden from view. These conclusions apply to equatorial and southern-temperate regions on Titan, excluding polar regions. We also find it unlikely that there is a large enhancement of the tropospheric CH4 mole fraction over the value reported from analysis of the Huygens/GCMS observations.  相似文献   
16.
Ocean Science Journal - Blooms of the moon jellyfish (Aurelia coerulea) have been responsible for huge economic losses and environmental disruptions in oceans around the world. The mass occurrence...  相似文献   
17.
Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly dependent on the wind speed, which fluctuates largely during the winter season. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
18.
A framework alternative to that of classical slope stability analysis is developed, wherein the soil mass is treated as a continuum and in-situ soil stresses and strengths are computed accurately using inelastic finite element methods with general constitutive models. Within this framework, two alternative methods of stability analysis are presented. In the first, the strength characteristics of the soil mass are held constant, and the gravitational loading on the slope system is increased until failure is initiated by well-defined mechanisms. In the second approach, the gravity loading on the slope system is held constant, while the strength parameters of the soil mass are gradually decreased until well-defined failure mechanisms develop. Details on applying both of the proposed methods, and comparisons of their characteristics on a number of solved example problems are presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
19.
In this paper, we examined the peak flow distribution on a realization of networks obtained with stochastic network models. Three network models including the uniform model, the Scheidegger model, and the Gibbsian model were utilized to generate networks. The network efficiency in terms of drainage time is highest on the Scheidegger model, whereas it is lowest on the uniform model. The Gibbsian model covers both depending on the parameter value of β. The magnitude of the peak flow at the outlet itself is higher on the Scheidegger model compared to the uniform model. However, the results indicate that the maximum peak flows can be observed not just at the outlet but also other parts of the mainstream. The results show that the peak flow distribution on each stochastic model has a common multifractal spectrum. The minimum value of α, which is obtained in the limit of a sufficiently large q, is equal to the fractal dimension of a single river. The multifractal properties clearly show the difference among three stochastic network models and how they are related. Moreover, the results imply that the multifractal properties can be utilized to estimate the value of β for a given drainage network.  相似文献   
20.
Sea surface winds and coastal winds, which have a significant influence on the ocean environment, are very difficult to predict. Although most planetary boundary layer (PBL) parameterizations have demonstrated the capability to represent many meteorological phenomena, little attention has been paid to the precise prediction of winds at the lowest PBL level. In this study, the ability to simulate sea winds of two widely used mesoscale models, fifth-generation mesoscale model (MM5) and weather research and forecasting model (WRF), were compared. In addition, PBL sensitivity experiments were performed using Medium-Range Forecasts (MRF), Eta, Blackadar, Yonsei University (YSU), and Mellor–Yamada–Janjic (MYJ) during Typhoon Ewiniar in 2006 to investigate the optimal PBL parameterizations for predicting sea winds accurately. The horizontal distributions of winds were analyzed to discover the spatial features. The time-series analysis of wind speed from five sensitivity experimental cases was compared by correlation analysis with surface observations. For the verification of sea surface winds, QuikSCAT satellite 10-m daily mean wind data were used in root-mean-square error (RMSE) and bias error (BE) analysis. The MRF PBL using MM5 produced relatively smaller wind speeds, whereas YSU and MYJ using WRF produced relatively greater wind speeds. The hourly surface observations revealed increasingly strong winds after 0300 UTC, July 10, with most of the experiments reproducing observations reliably. YSU and MYJ using WRF showed the best agreements with observations. However, MRF using MM5 demonstrated underestimated winds. The conclusions from the correlation analysis and the RMSE and BE analysis were compatible with the above-mentioned results. However, some shortcomings were identified in the improvements of wind prediction. The data assimilation of topographical data and asynoptic observations along coast lines and satellite data in sparsely observed ocean areas should make it possible to improve the accuracy of sea surface wind predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号