首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8255篇
  免费   224篇
  国内免费   435篇
测绘学   233篇
大气科学   706篇
地球物理   1722篇
地质学   3097篇
海洋学   697篇
天文学   1873篇
综合类   76篇
自然地理   510篇
  2023年   55篇
  2022年   82篇
  2021年   104篇
  2020年   96篇
  2019年   112篇
  2018年   250篇
  2017年   217篇
  2016年   320篇
  2015年   187篇
  2014年   294篇
  2013年   444篇
  2012年   262篇
  2011年   433篇
  2010年   318篇
  2009年   483篇
  2008年   367篇
  2007年   338篇
  2006年   350篇
  2005年   316篇
  2004年   304篇
  2003年   282篇
  2002年   266篇
  2001年   232篇
  2000年   212篇
  1999年   200篇
  1998年   182篇
  1997年   171篇
  1996年   163篇
  1995年   150篇
  1994年   121篇
  1993年   107篇
  1992年   86篇
  1991年   92篇
  1990年   87篇
  1989年   84篇
  1988年   61篇
  1987年   104篇
  1986年   64篇
  1985年   66篇
  1984年   71篇
  1983年   71篇
  1982年   74篇
  1981年   68篇
  1980年   54篇
  1979年   53篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8914条查询结果,搜索用时 15 毫秒
911.
—Several major features of the interaction of the Somali jet with the Western Ghat Mountains have been observed. These include a pressure ridge, strong vertical motions, and occurrences of highly reflective cloud and heavy rainfall rates along the west coast of India. A triple nested regional weather prediction model has been used to investigate the dynamic interaction between the Somali jet and the Western Ghat Mountains. Two numerical experiments were conducted; one with the topography of western India and the other without. In the experiment without topography, the Western Ghat Mountains were removed from the innermost domain. The results for the innermost domain in the two experiments were analyzed and compared. The results from the simulation with topography captured several of the observed features of the Somali jet interaction with the Western Ghat Mountains. The simulation without topography failed to reveal these features. The results suggest that the blocking effect of the Western Ghats plays an important role in the prediction of the rainfall over the west coast of India.  相似文献   
912.
Pattern Characteristics of Foreshock Sequences   总被引:1,自引:0,他引:1  
—Earthquake clusterings in both space and time have various forms, in particular, two typical examples are the foreshock sequences and earthquake swarms. Based on the analysis of 8 foreshock sequences in mainland China during 1966–1996, this study concentrates on the pattern characteristics of foreshock sequences. The following pattern characteristics of foreshock sequences have been found (1) the epicenters of foreshock sequences were densely concentrated in space; (2) the focal mechanisms of foreshocks were similar to that of the main shock. Such consistency of focal mechanisms with main shocks did not exist in aftershock series as well as in several earthquake swarms; (3) we found no case in mainland China during the past thirty years that a main shock is preceded by an earthquake clustering with inconsistent focal mechanisms. Finally, we found 5% of the main shocks in mainland China are preceded by foreshock sequences.  相似文献   
913.
Spatiotemporal trends in precipitation may influence vegetation restoration, and extreme precipitation events profoundly affect soil erosion processes on the Loess Plateau. Daily data collected at 89 meteorological stations in the area between 1957 and 2009 were used to analyze the spatiotemporal trends of precipitation on the Loess Plateau and the return periods of different types of precipitation events classified in the study. Nonparametric methods were employed for temporal analysis, and the Kriging interpolation method was employed for spatial analysis. The results indicate a small decrease in precipitation over the Loess Plateau in last 53 years (although a Mann–Kendall test did not show this decrease to be significant), a southward shift in precipitation isohyets, a slightly delayed rainy season, and prolonged return periods, especially for rainstorm and heavy rainstorm events. Regional responses to global climate change have varied greatly. A slightly increasing trend in precipitation in annual and sub‐annual series, with no obvious shift of isohyets, and an evident decreasing trend in extreme precipitation events were detected in the northwest. In the southeast, correspondingly, a more seriously decreasing trend occurred, with clear shifts of isohyets and a slightly decreasing trend in extreme precipitation events. The result suggests that a negative trend in annual precipitation may have led to decreased soil erosion but an increase in sediment yield during several extreme events. These changes in the precipitation over the Loess Plateau should be noted, and countermeasures should be taken to reduce their adverse impacts on the sustainable development of the region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
914.
The objective of this study was to quantify the impacts of land use/land cover (LULC) change on the hydrology of the Jedeb, an agricultural dominated mesoscale catchment, in the Abay/Upper Blue Nile basin, Ethiopia. Two methods have been used. First, the trends of certain daily flow variability parameters were evaluated to detect statistical significance of the change of the hydrologic response. Second, a conceptual monthly hydrological model was used to detect changes in the model parameters over different periods to infer LULC change. The results from the statistical analysis of the daily flows between 1973 and 2010 reveal a significant change in the response of the catchment. Peak flow is enhanced, i.e. response appears to be flashier. There is a significant increase in the rise and fall rates of the flow hydrograph, as well as the number of low‐flow pulses below a threshold level. The discharge pulses show a declining duration with time. The model result depicts a change in model parameters over different periods, which could be attributed to an LULC change. The model parameters representing soil moisture conditions indicated a gradual decreasing trend, implying limited storage capacity likely attributed to increasing agricultural farming practices in the catchment. This resulted in more surface runoff and less infiltration into the soil layers. The results of the monthly flow duration curve analysis indicated large changes of the flow regime. The high flow has increased by 45% between the 1990s and 2000s, whereas the reduction in low flows was larger: a 15% decrease between 1970s and 1980s, 39% between 1980s and 1990s and up to 71% between 1990s and 2000s. These results, could guide informed catchment management practices to reduce surface runoff and augment soil moisture level in the Jedeb catchment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
915.
We use the hydrographic data obtained during the joint survey of the Yellow Sea by the First Institute of Oceanography, China and the Korea Ocean Research and Development Institute, Korea, to quantify the spatial structures and temporal evolution of the southern Yellow Sea Cold Water Mass (YSCWM). It is indicated that the southern YSCWM is a water mass that develops in summer and decays in fall. In winter, due to the intrusion of the Yellow Sea Warm Current (YSWC), the central area (approximately between 34°N and 35°N, 122°E and 124°E) of the Yellow Sea is mainly occupied by relatively high temperature water (T>10 °C). By contrast, from early summer to fall, under the seasonal thermocline, the central area of Yellow Sea is occupied by cold water (T<10 °C). In summer, the southern YSCWM has two cold cores. One is formed locally southeast of Shandong Peninsula, and the other one has a tongue-like feature occupying the area approximately between 34°N and 37°N, 123°E and 126°E. The bottom layer temperature anomalies from February to July in the cold tongue region, along with the trajectories of the bottom floaters, suggest that the cold water mass in the northeast region has a displacement from the north to the central area of the Yellow Sea during the summer.  相似文献   
916.
Oversampling techniques are often used in porous media simulations to achieve high accuracy in multiscale simulations. These methods reduce the effect of artificial boundary conditions that are imposed in computing local quantities, such as upscaled permeabilities or basis functions. In the problems without scale separation and strong non-local effects, the oversampling region is taken to be the entire domain. The basis functions are computed using single-phase flow solutions which are further used in dynamic two-phase simulations. The standard oversampling approaches employ generic global boundary conditions which are not associated with actual flow boundary conditions. In this paper, we propose a flow based oversampling method where the actual two-phase flow boundary conditions are used in constructing oversampling auxiliary functions. Our numerical results show that the flow based oversampling approach is several times more accurate than the standard oversampling method. We provide partial theoretical explanation for these numerical observations.  相似文献   
917.
In general, the accuracy of numerical simulations is determined by spatial and temporal discretization levels. In fractured porous media, the time step size is a key factor in controlling the solution accuracy for a given spatial discretization. If the time step size is restricted by the relatively rapid responses in the fracture domain to maintain an acceptable level of accuracy in the entire simulation domain, the matrix tends to be temporally over-discretized. Implicit sub-time stepping applies smaller sub-time steps only to the sub-domain where the accuracy requirements are less tolerant and is most suitable for problems where the response is high in only a small portion of the domain, such as within and near the fractures in fractured porous media. It is demonstrated with illustrative examples that implicit sub-time stepping can significantly improve the simulation efficiency with minimal loss in accuracy when simulating flow and transport in fractured porous media. The methodology is successfully applied to density-dependent flow and transport simulations in a Canadian Shield environment, where the flow and transport is dominated by discrete, highly conductive fracture zones.  相似文献   
918.
The last magmatic eruption of Soufrière of Guadeloupe dated at 1530 A.D. (Soufrière eruption) is characterized by an onset with a partial flank-collapse and emplacement of a debris-avalanche that was followed by a sub-plinian VEI 2–3 explosive short-lived eruption (Phase-1) with a column that reached a height between 9 and 12 km producing about 3.9 × 106 m3 DRE (16.3 × 106 m3 bulk) of juvenile products. The column recurrently collapsed generating scoriaceous pyroclastic flows in radiating valleys up to a distance of 5–6 km with a maximum interpolated bulk deposit volume of 11.7 × 106 m3 (5 × 106 m3 DRE). We have used HAZMAP, a numerical simple first-order model of tephra dispersal [Macedonio, G., Costa, A., Longo, A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837–845] to reconstruct to a first approximation the potential dispersal of tephra and associated tephra mass loadings generated by the sub-plinian Phase 1 of the 1530 A.D. eruption. We have tested our model on a deterministic average dry season wind profile that best-fits the available data as well as on a set of randomly selected wind profiles over a 5 year interval that allows the elaboration of probabilistic maps for the exceedance of specific tephra mass load thresholds. Results show that in the hypothesis of a future 1530 A.D. scenario, populated areas to a distance of 3–4 km west–southwest of the vent could be subjected to a static load pressure between 2 and 10 kPa in case of wet tephra, susceptible to cause variable degrees of roof damage. Our results provide volcanological input parameters for scenario and event-tree definition, for assessing volcanic risks and evaluating their impact in case of a future sub-plinian eruption which could affect up to 70 000 people in southern Basse-Terre island and the region. They also provide a framework to aid decision-making concerning land management and development. A sub-plinian eruption is the most likely magmatic scenario in case of a future eruption of this volcano which has shown, since 1992, increasing signs of low-energy seismic, thermal, and acid degassing unrest without significant deformation.  相似文献   
919.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   
920.
Modeling transport of contaminants in the earths subsurface relies on numerical solutions over grids with blocks larger than Darcys scale. The hydraulic conductivity is homogenized over the grid blocks and the plumes spreading is reduced as a consequence of the wiped-out variability. To compensate for this loss Rubin et al. (1999) proposed to augment mixing by block-effective dispersion coefficients, and Rubin et al. (2003) showed, by means of two dimensional simulations, how this concept can be applied in practice. In this paper, we present new solutions of the block-effective dispersion tensor for an axisymmetric exponential covariance model. In addition, we discuss the influence of pore-scale dispersion in both two- and three-dimensional applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号