首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39898篇
  免费   3507篇
  国内免费   5196篇
测绘学   3033篇
大气科学   5366篇
地球物理   8459篇
地质学   19446篇
海洋学   3426篇
天文学   2258篇
综合类   3637篇
自然地理   2976篇
  2024年   93篇
  2023年   277篇
  2022年   741篇
  2021年   891篇
  2020年   748篇
  2019年   891篇
  2018年   5457篇
  2017年   4692篇
  2016年   3397篇
  2015年   1131篇
  2014年   1123篇
  2013年   1142篇
  2012年   2002篇
  2011年   3726篇
  2010年   3004篇
  2009年   3320篇
  2008年   2812篇
  2007年   3231篇
  2006年   863篇
  2005年   914篇
  2004年   899篇
  2003年   871篇
  2002年   761篇
  2001年   591篇
  2000年   559篇
  1999年   635篇
  1998年   540篇
  1997年   489篇
  1996年   465篇
  1995年   364篇
  1994年   350篇
  1993年   313篇
  1992年   275篇
  1991年   210篇
  1990年   163篇
  1989年   140篇
  1988年   121篇
  1987年   58篇
  1986年   70篇
  1985年   41篇
  1984年   37篇
  1983年   19篇
  1982年   41篇
  1981年   34篇
  1980年   38篇
  1979年   13篇
  1978年   7篇
  1977年   7篇
  1976年   10篇
  1958年   13篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
981.
Coupled thermo‐hydro‐mechanical‐chemical modelling has attracted attention in past decades due to many contemporary geotechnical engineering applications (e.g., waste disposal, carbon capture and storage). However, molecular‐scale interactions within geomaterials (e.g., swelling and dissolution/precipitation) have a significant influence on the mechanical behaviour, yet are rarely incorporated into existing Thermal‐Hydro‐Mechanical‐Chemical (THMC) frameworks. This paper presents a new coupled hydro‐mechanical‐chemical constitutive model to bridge molecular‐scale interactions with macro‐physical deformation by combining the swelling and dissolution/precipitation through an extension of the new mixture‐coupling theory. Entropy analysis of the geomaterial system provides dissipation energy, and Helmholtz free energy gives the relationship between solids and fluids. Numerical simulation is used to compare with the selected recognized models, which demonstrates that the swelling and dissolution/precipitation processes may have a significant influence on the mechanical deformation of the geomaterials.  相似文献   
982.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
983.
984.
985.
986.
Salinity is a vital factor that regulates leaf photosynthesis and growth of mangroves, and it frequently undergoes large seasonal and daily fluctuations creating a range of environments – oligohaline to hyperhaline. Here, we examined the hypotheses that mangroves benefit opportunistically from low salinity resulting from daily fluctuations and as such, mangroves under daily fluctuating salinity (FS) grow better than those under constant salinity (CS) conditions. We compared growth, salt accumulation, gas exchange, and chlorophyll fluorescence of leaves of mangrove Bruguiera gymnorhiza seedlings growing in freshwater (FW), CS (15 practical salinity units, PSU), and daily FS (0–30 PSU, average of 4.8 PSU) conditions. The traits of FS-treated leaves were measured in seedlings under 15 PSU. FS-treated seedlings had greater leaf biomass than those in other treatment groups. Moreover, leaf photosynthetic rate, capacity to regulate photoelectron uptake/transfer, and leaf succulence were significantly higher in FS than in CS treatment. However, leaf water-use efficiency showed the opposite trend. In addition to higher concentrations of Na+ and Cl, FS-treated leaves accumulated more Ca2+ and K+. We concluded that daily FS can enhance water absorption, photosynthesis, and growth of leaves, as well as alter plant biomass allocation patterns, thereby positively affecting B. gymnorhiza. Mangroves that experience daily FS may increase their adaptability by reducing salt build-up and water deficits when their roots are temporally subjected to low salinity or FW and by absorbing sufficient amounts of Na+ and Cl for osmotic adjustment when their roots are subsequently exposed to saline water.  相似文献   
987.
988.
989.
We present a new reconstruction of summer sea‐surface salinity (SSS) over the past 15 000 years based on a diatom record from piston core 17940, located on the northern slope of the South China Sea (SCS). The reconstructed diatom‐based summer SSS values for the modern period are in accord with instrumental observations of summer SSS in the area. Here, the modern summer SSS is primarily controlled by river runoff, in particular from the Pearl River. The reconstruction presented in this study shows that the summer SSS varied between 33.3 and 34.2 psu over the past 15 000 years. The long‐term summer SSS trend closely followed the trend of the orbitally controlled solar insolation at 20°N, suggesting that orbital forcing was the dominant driver of changes in summer SSS in this area. Comparisons to speleothem δ18O data and studies of surface hydrography in the region suggest that changes in solar insolation affected the summer SSS through changes in the East Asian Monsoon and sea‐level changes associated with the last deglaciation. Univariate spectral analyses indicate that centennial‐scale oscillatory variations in summer SSS were superimposed on the long‐term trend. During the deglacial period (c. 12 000–9000 cal. a BP), the dominant periodicity was centred around 230–250 years, whereas a ~350‐year oscillation dominated in the period 2200–4500 cal. a BP. The balance of evidence suggests that these centennial‐scale changes in summer SSS may have been driven by solar‐induced changes in the East Asian Monsoon, but further evidence is needed to firmly establish this relationship.  相似文献   
990.
The traditional theory of soil arching effect was developed on the assumption that stress distribution in the loosening zone is uniform. However, because of the deflection of principal stress' direction, the stress distribution in the loosening zone is actually ununiform. For the evaluation of principal stress axis deflection and stress redistribution, a discrete element method numerical model of trapdoor problem is established for the simulation of soil arching effect. Based on the numerical results, an arc shape of major principal stress trajectory and uniform horizontal stress distribution at the same depth of the loosening zone are adopted. An analytical model is raised to estimate the average loosening earth pressure acting on the trapdoor and stress distribution in the loosening zone at a limit state. In addition, comparison studies are carried out between the predictions of the proposed solutions and discrete element method numerical results as well as available model test results, thereby validating the accuracy of the proposed theoretical model. Both numerical and theoretical results indicate that the vertical stress distribution in the loosening zone is obviously ununiform. The load acting in the middle of loosening zone is transferred toward two sides so that the vertical stress distribution in loosening zone is concave.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号