首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52136篇
  免费   875篇
  国内免费   359篇
测绘学   1386篇
大气科学   4061篇
地球物理   9965篇
地质学   17272篇
海洋学   4421篇
天文学   12591篇
综合类   117篇
自然地理   3557篇
  2020年   370篇
  2019年   379篇
  2018年   876篇
  2017年   867篇
  2016年   1113篇
  2015年   763篇
  2014年   1231篇
  2013年   2585篇
  2012年   1183篇
  2011年   1661篇
  2010年   1547篇
  2009年   2077篇
  2008年   1880篇
  2007年   1881篇
  2006年   1785篇
  2005年   1632篇
  2004年   1583篇
  2003年   1487篇
  2002年   1428篇
  2001年   1290篇
  2000年   1197篇
  1999年   1166篇
  1998年   1102篇
  1997年   1096篇
  1996年   895篇
  1995年   872篇
  1994年   832篇
  1993年   776篇
  1992年   758篇
  1991年   725篇
  1990年   808篇
  1989年   713篇
  1988年   694篇
  1987年   786篇
  1986年   651篇
  1985年   882篇
  1984年   1015篇
  1983年   973篇
  1982年   916篇
  1981年   858篇
  1980年   767篇
  1979年   742篇
  1978年   729篇
  1977年   666篇
  1976年   624篇
  1975年   540篇
  1974年   622篇
  1973年   617篇
  1972年   383篇
  1971年   353篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The procedure for geotechnical site investigation is well established but little attention is currently given to investigating the potential of vegetation to assist with ground stability. This paper describes how routine investigation procedures may be adapted to consider the effects of the vegetation. It is recommended that the major part of the vegetation investigation is carried out, at relatively low cost, during the preliminary (desk) study phase of the investigation when there is maximum flexibility to take account of findings in the proposed design and construction. The techniques available for investigation of the effects of vegetation are reviewed and references provided for further consideration. As for general geotechnical investigation work, it is important that a balance of effort is maintained in the vegetation investigation between (a) site characterisation (defining and identifying the existing and proposed vegetation to suit the site and ground conditions), (b) testing (in-situ and laboratory testing of the vegetation and root systems to provide design parameters) and (c) modelling (to analyse the vegetation effects).  相似文献   
952.
Uncertainties in polar motion and length-of-day measurements are evaluated empirically using several data series from the space-geodetic techniques of the global positioning system (GPS), satellite laser ranging (SLR), and very long baseline interferometry (VLBI) during 1997–2002. In the evaluation procedure employed here, known as the three-corner hat (TCH) technique, the signal common to each series is eliminated by forming pair-wise differences between the series, thus requiring no assumed values for the “truth” signal. From the variances of the differenced series, the uncertainty of each series can be recovered when reasonable assumptions are made about the correlations between the series. In order to form the pair-wise differences, the series data must be given at the same epoch. All measurement data sets studied here were sampled at noon (UTC); except for the VLBI series, whose data are interpolated to noon and whose UT1 values are also numerically differentiated to obtain LOD. The numerical error introduced to the VLBI values by the interpolation and differentiation is shown to be comparable in magnitude to the values determined by the TCH method for the uncertainties of the VLBI series. The TCH estimates for the VLBI series are corrupted by such numerical errors mostly as a result of the relatively large data intervals. Of the remaining data sets studied here, it is found that the IGS Final combined series has the smallest polar motion and length-of-day uncertainties.  相似文献   
953.
The use of object-orientation for both spatial data and spatial process models facilitates their integration, which can allow exploration and explanation of spatial-temporal phenomena. In order to better understand how tight coupling might proceed and to evaluate the possible functional and efficiency gains from such a tight coupling, we identify four key relationships affecting how geographic data (fields and objects) and agent-based process models can interact: identity, causal, temporal and topological. We discuss approaches to implementing tight integration, focusing on a middleware approach that links existing GIS and ABM development platforms, and illustrate the need and approaches with example agent-based models.  相似文献   
954.
The satellite missions CHAMP, GRACE, and GOCE mark the beginning of a new era in gravity field determination and modeling. They provide unique models of the global stationary gravity field and its variation in time. Due to inevitable measurement errors, sophisticated pre-processing steps have to be applied before further use of the satellite measurements. In the framework of the GOCE mission, this includes outlier detection, absolute calibration and validation of the SGG (satellite gravity gradiometry) measurements, and removal of temporal effects. In general, outliers are defined as observations that appear to be inconsistent with the remainder of the data set. One goal is to evaluate the effect of additive, innovative and bulk outliers on the estimates of the spherical harmonic coefficients. It can be shown that even a small number of undetected outliers (<0.2 of all data points) can have an adverse effect on the coefficient estimates. Consequently, concepts for the identification and removal of outliers have to be developed. Novel outlier detection algorithms are derived and statistical methods are presented that may be used for this purpose. The methods aim at high outlier identification rates as well as small failure rates. A combined algorithm, based on wavelets and a statistical method, shows best performance with an identification rate of about 99%. To further reduce the influence of undetected outliers, an outlier detection algorithm is implemented inside the gravity field solver (the Quick-Look Gravity Field Analysis tool was used). This results in spherical harmonic coefficient estimates that are of similar quality to those obtained without outliers in the input data.  相似文献   
955.
R. Pail 《Journal of Geodesy》2005,79(4-5):231-241
In the recent design of the Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission, the gravity gradients are defined in the gradiometer reference frame (GRF), which deviates from the actual flight direction (local orbit reference frame, LORF) by up to 3–4°. The main objective of this paper is to investigate the effect of uncertainties in the knowledge of the gradiometer orientation due to attitude reconstitution errors on the gravity field solution. In the framework of several numerical simulations, which are based on a realistic mission configuration, different scenarios are investigated, to provide the accuracy requirements of the orientation information. It turns out that orientation errors have to be seriously considered, because they may represent a significant error component of the gravity field solution. While in a realistic mission scenario (colored gradiometer noise) the gravity field solutions are quite insensitive to small orientation biases, random noise applied to the attitude information can have a considerable impact on the accuracy of the resolved gravity field models.  相似文献   
956.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
957.
Estimation of differential shift of image elements between two synthetic aperture radar (SAR) images is the basis for many applications, like digital elevation model generation or ground motion mapping. The shift measurement can be done nonambiguously on the macro scale at an accuracy depending on the range resolution of the system or on the micro scale by employing interferometric methods. The latter suffers from phase cycle ambiguities and requires phase unwrapping. Modern wideband high-resolution SAR systems boast resolutions as small as a few tens of a wavelength. If sufficiently many samples are used for macro-scale shift estimation, the accuracy can be increased to a small fraction of a resolution cell and even in the order of a wavelength. Then, accurate absolute ranging becomes precise enough to support phase unwrapping or even make it obsolete. This letter establishes a few fundamental equations on the accuracy bounds of shift estimation accuracy for several algorithms: coherent speckle correlation, incoherent speckle correlation, split-band interferometry, a multifrequency approach, and correlation of point scatterers in clutter. It is shown that the performance of split-band interferometry is close to the Crame/spl acute/r-Rao bound for a broad variety of bandwidth ratios. Based on these findings, Delta-k systems are proposed to best take advantage of the available radar bandwidth.  相似文献   
958.
The goal of this study was to characterize and quantify the occurrence of data voids in data from the Shuttle Radar Topography Mission (SRTM) for the conterminous United States. For this purpose, SRTM data and corresponding data from the national elevation data were downloaded in 21 samples spatially organized to cover the main topography of the U.S. Void locations in SRTM data were compared to terrain attributes and subsequently the area of individual data voids to the same attributes. It was found that data voids amounted to 0.3% of the total dataset. Data voids were found in all topographic settings but more often in slopes steeper than approximately 20/spl deg/ that face south (170/spl deg/), and also in flat areas such as lakes and rivers. It was also found that more than 50% of all data voids were composed of connected pixels in groups less than six pixels. The largest data voids could be attributed to water bodies, while the rest could be explained by terrain-radar interaction characteristics.  相似文献   
959.
In this letter we develop a new concept, the negative alpha filter, which we suggest has application for quantitative estimation of surface parameters beneath vegetation using polarimetric synthetic aperture radar (SAR) interferometry (POLInSAR). We first derive the filter and then validate it using simulations of L-band coherent forest scattering. We then show initial results of applying the filter to airborne data from the German Aerospace Center's E-SAR L-band sensor.  相似文献   
960.
Digital topography models for Martian surfaces   总被引:2,自引:0,他引:2  
We propose to use an unsupervised automated classification of topographic features on Mars in order to speed up geomorphic and geologic mapping of the planet. We construct a digital topography model (DTM), a multilayer grid that stores various kinds of topographical information for every pixel in a site. The method uses a probabilistic clustering algorithm to assign topographically meaningful labels to all pixels in the DTM. The results are displayed as a thematic map of topography. Resultant topographical features are characterized and compared using statistics of their constituent pixels. We demonstrate the usage of our method by classifying and characterizing the topography of a landscape in the Tisia Valles region on Mars. We discuss extensions and further applications of our method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号