首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25253篇
  免费   380篇
  国内免费   263篇
测绘学   623篇
大气科学   1928篇
地球物理   5402篇
地质学   8839篇
海洋学   2031篇
天文学   5370篇
综合类   38篇
自然地理   1665篇
  2020年   135篇
  2019年   127篇
  2018年   290篇
  2017年   266篇
  2016年   412篇
  2015年   298篇
  2014年   422篇
  2013年   1176篇
  2012年   504篇
  2011年   782篇
  2010年   640篇
  2009年   906篇
  2008年   833篇
  2007年   794篇
  2006年   822篇
  2005年   714篇
  2004年   747篇
  2003年   709篇
  2002年   713篇
  2001年   587篇
  2000年   600篇
  1999年   571篇
  1998年   547篇
  1997年   560篇
  1996年   461篇
  1995年   458篇
  1994年   439篇
  1993年   410篇
  1992年   380篇
  1991年   327篇
  1990年   379篇
  1989年   296篇
  1988年   340篇
  1987年   376篇
  1986年   326篇
  1985年   481篇
  1984年   523篇
  1983年   529篇
  1982年   422篇
  1981年   418篇
  1980年   436篇
  1979年   381篇
  1978年   396篇
  1977年   346篇
  1976年   376篇
  1975年   341篇
  1974年   380篇
  1973年   365篇
  1972年   233篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
521.
Recent electrochemical measurements have shown that iron (Fe) speciation in seawater is dominated by complexation with strong organic ligands throughout the water column and have provided important thermodynamic information about these compounds. Independent work has shown that iron exists in both soluble and colloidal fractions in the Atlantic Ocean. Here we have combined these approaches in samples collected from a variety of regimes within the Atlantic Ocean. We measured the partitioning of Fe between soluble (< 0.02 μm) and colloidal (0.02 to 0.4 μm) size classes and characterized the concentrations and conditional stability constants of Fe ligands within these size classes. Results suggest that equilibrium partitioning of Fe between soluble and colloidal ligands is partially responsible for the distribution of Fe between soluble and colloidal size classes. However, a significant fraction of the colloidal Fe was inert to ligand exchange as soluble Fe concentrations were generally lower than values predicted by a simple equilibrium partitioning model.In surface waters, strong ligands with conditional stability constants of 1013 relative to total inorganic Fe appeared to dominate speciation in both the soluble and colloidal fractions. In deep waters these ligands were absent, and instead we found ligands with stability constants 12–15 fold smaller that were predominantly in the soluble pool. Nevertheless, significant levels of colloidal Fe were found in these samples, which we inferred must be inert to coordination exchange.  相似文献   
522.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   
523.
Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.  相似文献   
524.
Monthly investment in soma and gonads in the bivalve Scrobicularia plana is described for three populations along its distributional range: Minho estuary, Portugal; Westerschelde estuary, The Netherlands and Buvika estuary, Norway. Seasonal cycles in body mass (BMI), somatic mass (SMI) and gonadal mass (GMI) indices were observed for all populations. In Portugal, BMI and SMI peaked in mid-autumn, while in The Netherlands both indices were at their highest in mid-spring. Norway showed a different pattern with two distinct peaks: one in mid-autumn and a second peak in spring. GMI reached maximum values in July in Portugal and Netherlands and in June in Norway. Overall, mean BMI and SMI were lower in Portugal while mean GMI was lower in Norway. The spawning period lasted the whole summer in Portugal, but was shorter (only two months) in The Netherlands and Norway. The reproductive investment in The Netherlands was significantly higher than in Portugal and Norway, with the lowest values being observed in Norway. Differences in annual cycles between populations were attributed to environmental factors, namely temperature and food availability. Temperature seems important in shaping the reproductive pattern with more northern populations showing shorter reproductive periods starting later in the year, and a lower reproductive output. In addition, winter water temperatures can explain the lower mean body and somatic mass values observed in Portugal. Food availability influenced the physiological performance of the species with peaks in somatic mass coinciding with phytoplankton blooms. This relation between physiological performance and environmental factors influences S. plana distribution, densities and even survival, with natural consequences on its commercial importance.  相似文献   
525.
It is generally assumed that estuarine mixing is continuous for metals from terrestrial sources, gradually decreasing towards the open ocean endmember. Here we show that, chemical reactivity, determined by ion exchange method, and molecular weight distributions, obtained using cross-flow ultrafiltration, of dissolved Cd, Cu, and Ni in the surface waters of the Gulf of Mexico varied systematically across the estuarine mixing zone of the Mississippi River. Most size or chemical affinity fractions of dissolved metals (<0.4 μm) were linearly related to salinity (10.8–36.6), suggesting that the distribution of these elements was mainly controlled by continuous mixing processes. Dissolved concentrations across the salinity gradient ranged for Cd: 87–187 pM; Cu: 1.4–18.3 nM; and Ni: 2.6–18.8 nM, with highest values near the Mississippi river mouth, and lowest concentrations in a warm core ring in the Gulf of Mexico. Dissolved Cd was mostly present as a truly dissolved (<10 kDa, 97 ± 1%) and cationic fraction (Chelex-100 extractable, 94 ± 4%). A novel observation across the estuarine mixing zone was that colloidal metal concentrations were identical to either inert (for Cu, Ni) or AMPG-labile anionic (Cu, Cd) fractions. The difference in behavior between Cu and the other two metals might indicate differences in the biopolymeric nature of the metal–organic chelates. In particular, the anionic-organic Cd fractions accounted for just 3 ± 1%, on average. However, for Cu, it was 24 ± 4%, and for Ni, it was 9 ± 6%. The fractions of the total dissolved metal fractions that were “inert” averaged 31 ± 10% for Cu and 29 ± 12% for Ni. Small but noticeable amounts (6 ± 3%) of dissolved inert Cd fractions were also present. Apparent non-local transport processes, likely associated with cross-shelf sediment resuspension processes, could have been responsible for the relatively high concentrations of ‘inert’ and ‘anionic’ metal fractions in high salinity coastal waters, and accounting for the persistence of metals bound to humic substances in the Gulf of Mexico.  相似文献   
526.
Bacterioplankton productivity (BP) spatial variation was investigated in relation to potential resources, including primary productivity and dissolved organic matter, in the micro-tidal Neuse River–Pamlico Sound estuarine system, North Carolina, USA. Estuarine BP was predicted to correlate with the trophic gradient, decreasing along the salinity gradient in parallel with the decrease in organic matter and primary productivity. This prediction was tested over four years at spatial scales ranging from kilometers to meters along the riverine axis and with depth. The general pattern of BP across the salinity gradient was unimodal and matched the phytoplankton patterns in peak location and variability. Peak locations varied with discharge, especially in 2003 when above average discharge moved peaks downstream. Spatial coherence of BP with other variables was much less at short time scales. The effect of temperature, nutrients, and phytoplankton on BP varied by location, especially fresh versus brackish stations, although only temperature explained more than 20% of the BP variation. Depth variation of BP was as great as longitudinal variation and bottom samples were often higher than surface. BP was strongly correlated with particulate organic carbon at the pycnocline and bottom, highlighting the importance of particulate matter as a resource. Station-averaged BP and phytoplankton data corresponded well with two published meta-analyses, although the offset of the freshwater station suggested longitudinal differences in community composition or resource availability.  相似文献   
527.
This paper begins by reviewing the structure and evolution of polar bear (Ursus maritimus) management in Canada and in the Territory of Nunavut since the inception of the Agreement on the Conservation of Polar Bears in the 1970s. This is followed by the paper's main focus, the examination of the socio-economic and cultural importance of polar bears for Inuit and the success of the Agreement in supporting contemporary Inuit subsistence relations in Nunavut.  相似文献   
528.
The loss of beach sand from berm and dune due to high waves and surge is a universal phenomenon associated with sporadic storm activities. To protect the development in a coastal hazard zone, hard structures or coastal setback have been established in many countries around the world. In this paper, the requirement of a storm beach buffer, being a lesser extent landward comparing with the coastal setback to ensure the safety of infrastructures, is numerically assessed using the SBEACH model for three categories of wave conditions in terms of storm return period, median sand grain size, berm width, and design water level. Two of the key outputs from the numerical calculations, berm retreat and bar formation offshore, are then analysed, as well as beach profile change. After having performed a series of numerical studies on selected large wave tank (LWT) test results with monochromatic waves using SBEACH, we may conclude that: (1) Berm erosion increases and submerged bar develops further offshore as the storm return period increases for beach with a specific sand grain size, or as the sand grain reduces on a beach under the action of identical wave condition; (2) Higher storm waves yield a large bar to form quicker and subsequently cause wave breaking on the bar crest, which can reduce the wave energy and limit the extent of the eroding berm; (3) A larger buffer width is required for a beach comprising small sand grain, in order to effectively absorb storm wave energy; and (4) Empirical relationships can be tentatively proposed to estimate the storm beach buffer width, from the input of wave conditions and sediment grain size. These results would benefit a beach nourishment project for shore protection or design of a recreational beach.  相似文献   
529.
The spin up and relaxation of an autumn upwelling event on the Beaufort slope is investigated using a combination of oceanic and atmospheric data and numerical models. The event occurred in November 2002 and was driven by an Aleutian low storm. The wind field was strongly influenced by the pack-ice distribution, resulting in enhanced winds over the open water of the Chukchi Sea. Flow distortion due to the Brooks mountain range was also evident. Mooring observations east of Barrow Canyon show that the Beaufort shelfbreak jet reversed to the west under strong easterly winds, followed by upwelling of Atlantic Water onto the shelf. After the winds subsided a deep eastward jet of Atlantic Water developed, centered at 250 m depth. An idealized numerical model reproduces these results and suggests that the oceanic response to the local winds is modulated by a propagating signal from the western edge of the storm. The disparity in wave speeds between the sea surface height signal—traveling at the fast barotropic shelf wave speed—versus the interior density signal—traveling at the slow baroclinic wave speed—leads to the deep eastward jet. The broad-scale response to the storm over the Chukchi Sea is investigated using a regional numerical model. The strong gradient in windspeed at the ice edge results in convergence of the offshore Ekman transport, leading to the establishment of an anti-cyclonic gyre in the northern Chukchi Sea. Accordingly, the Chukchi shelfbreak jet accelerates to the east into the wind during the storm, and no upwelling occurs west of Barrow Canyon. Hence the storm response is fundamentally different on the Beaufort slope (upwelling) versus the Chukchi slope (no upwelling). The regional numerical model results are supported by additional mooring data in the Chukchi Sea.  相似文献   
530.
We present an improved crossover adjustment procedure to determine mean sea surface height using TOPEX, 35-day repeat phase ERS-1, Geosat, and 168-day repeat phase ERS-1 satellite altimeter data. The mean sea surface frame defined by the TOPEX data is imposed as certain constraints in our crossover adjustment procedure rather than held fixed as in some other procedures. The new procedure is discussed in detail. Equations are developed to incorporate the a priori information of Topex data as well as other satellite altimeter data. The numerical computation result shows that the rms crossover discrepancies are reduced by an order of 1 cm when the Topex data is not fixed. Furthermore, the computed mean sea surface is less noisy and more realistic than that computed by the traditional procedure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号