首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85069篇
  免费   1068篇
  国内免费   599篇
测绘学   2138篇
大气科学   6693篇
地球物理   17755篇
地质学   28177篇
海洋学   7113篇
天文学   18686篇
综合类   182篇
自然地理   5992篇
  2020年   631篇
  2019年   640篇
  2018年   1140篇
  2017年   1111篇
  2016年   1647篇
  2015年   1237篇
  2014年   1711篇
  2013年   4090篇
  2012年   1861篇
  2011年   2812篇
  2010年   2389篇
  2009年   3522篇
  2008年   3202篇
  2007年   2937篇
  2006年   3009篇
  2005年   2604篇
  2004年   2717篇
  2003年   2549篇
  2002年   2447篇
  2001年   2144篇
  2000年   2132篇
  1999年   1869篇
  1998年   1870篇
  1997年   1840篇
  1996年   1594篇
  1995年   1521篇
  1994年   1407篇
  1993年   1273篇
  1992年   1217篇
  1991年   1055篇
  1990年   1269篇
  1989年   1082篇
  1988年   1005篇
  1987年   1221篇
  1986年   1075篇
  1985年   1373篇
  1984年   1569篇
  1983年   1496篇
  1982年   1332篇
  1981年   1302篇
  1980年   1176篇
  1979年   1114篇
  1978年   1169篇
  1977年   1058篇
  1976年   1047篇
  1975年   961篇
  1974年   977篇
  1973年   997篇
  1972年   633篇
  1971年   554篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Fluxes of Sr into the headwaters of the Ganges   总被引:1,自引:0,他引:1  
Himalayan weathering is recognized as an important agent in modifying sea water chemistry, but there are significant uncertainties in our understanding of Himalayan riverine fluxes. This paper examines causes of the variability, including that of the seasons, by analysis of downstream variations in Sr, 87Sr, and major ions in the mainstream, in relation to the composition of tributary streams from subcatchments with differing geologic substrates.Water samples were collected over four periods spanning the premonsoon, monsoon, and postmonsoon seasons. Uncertainties in the relative fluxes have been estimated, using Monte Carlo techniques, from the short-term variability of mainstream chemistry and the scatter of tributary compositions. The results show marked seasonal variations in the relative inputs related to high monsoon rainfall in the High and Lesser Himalaya, contrasting with the major contribution from glacial melt waters from the Tibetan Sedimentary Series (TSS) at times of low rainfall. Much of the spread in previously published estimates of the sources of Sr in Himalayan rivers may result from these seasonal variations in Sr fluxes.The annual fluxes of Sr into the headwaters of the Ganges are derived from the three main tectonic units in the proportions 35 ± 1% from the TSS, 27 ± 3% from the High Himalayan Crystalline Series (HHCS), and 38 ± 8% from the Lesser Himalaya. The particularly elevated 87Sr/86Sr ratios characteristic of the HHCS and the Lesser Himalaya enhance their influence on seawater Sr-isotope composition. The TSS contributes 13 ± 1%, the HHCS 30 ± 3%, and the Lesser Himalaya 57 ± 11% of the 87Sr flux in excess of the seawater 87Sr/86Sr ratio of 0.709.  相似文献   
972.
Studies have shown that using organic coated bubbles (“oily” bubbles) could increase bitumen recovery rate in flotation. One way to coat bubbles is that used in the air-assisted solvent extraction process where solvent foam is formed and injected through a capillary to release solvent coated bubbles in a controlled manner into the aqueous system. To investigate adapting this approach, the foaming properties of some organics (Hexane, Heptane, Hexadecane, Petroleum Ether, Toluene, Benzene and Kerosene and their binary mixtures) of potential interest in oily bubble bitumen flotation were investigated. Silicone oil was found to be a good foaming agent in some cases. Bubble stability and film thickness experiments were carried out to help select candidate organics. Surface tension and dynamic viscosity measurements were conducted to examine the mechanism of foaming. Attachment studies showed that droplets of the selected organics readily attached to a bitumen surface compared to air bubbles. From a combination of criteria, 25:75 Hexadecane/Heptane appears to be a promising candidate.  相似文献   
973.
Short time periodicities of 3, 6, and 12 months have been found by analysis of the coefficient of atmospheric activity of Jupiter for the time period 1963–1967.These periodicities have been attributed to seasonal variations of the Jovian atmosphere, and could be related to similar periodicities observed in solar flares and in the high velocity solar wind streamers.  相似文献   
974.
The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here.This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance.A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding.  相似文献   
975.
Y.C. Minh  W.M. Irvine   《New Astronomy》2006,11(8):594-599
The large-scale structure associated with the 2′N HNCO peak in Sgr B2 [Minh, Y.C., Haikala, L., Hjalmarson, Å., Irvine, W.M., 1998. ApJ 498, 261 (Paper I)] has been investigated. A ring-like morphology of the HNCO emission has been found; this structure may be colliding with the Principal Cloud of Sgr B2. This “HNCO Ring” appears to be centered at (l,b) = (0.7°,−0.07°), with a radius of 5 pc and a total mass of 1.0 × 105 to 1.6 × 106 M. The expansion velocity of the Ring is estimated to be 30–40 km s−1, which gives an expansion time scale of 1.5 × 105 year. The morphology suggests that collision between the Ring and the Principal Cloud may be triggering the massive star formation in the Sgr B2 cloud sequentially, with the latest star formation taking place at the 2′N position. The chemistry related to HNCO is not certain yet, but if it forms mainly via reaction with the evaporated OCN from icy grain mantles, the observed enhancement of the HNCO abundance can be understood as resulting from shocks associated with the collision between the Principal Cloud and the expanding HNCO Ring.  相似文献   
976.
Data obtained by the Explorer 34 satellite regarding the degree of anisotropy of ≳ 70 keV electrons of solar origin are reported. It is shown that the anisotropies are initially field aligned, and that they decay to ≲ 10% in a time of the order of 1 hr. The decays of the concurrent ionic and electronic anisotropies for one well observed event are in good agreement with the diffusive propagation model of Fisk and Axford. The data suggest parallel diffusion coefficients for both ions and electrons that are rigidity independent. From considerations of a long lived electron event, it is shown that the electronic fluxes exhibit ‘equilibrium’ anositropies at late times. These are interpreted as indicating that convective removal at the solar wind velocity is the dominant mechanism whereby solar cosmic ray electrons (∼- 70 keV) leave the solar system. They also indicate that there is a positive density gradient at late times in a solar electron event. The data suggest that this was established prior to the establishment of a similar gradient for the cosmic ray ions. This research was supported by the National Aeronautics and Space Administration under contracts NASr-198 and NAS5-9075. The research in India was supported by funds from the Department of Atomic Energy, Government of India and funds from the grant NAS-1492 from the National Academy of Sciences, U.S.A. Support in data analysis was also provided by Air Force Cambridge Research Laboratories, and by the Australian Research Grants Committee.  相似文献   
977.
A mechanism of damped oscillations of a coronal loop is investigated. The loop is treated as a thin toroidal flux rope with two stationary photospheric footpoints, carrying both toroidal and poloidal currents. The forces and the flux-rope dynamics are described within the framework of ideal magnetohydrodynamics (MHD). The main features of the theory are the following: i) Oscillatory motions are determined by the Lorentz force that acts on curved current-carrying plasma structures and ii) damping is caused by drag that provides the momentum coupling between the flux rope and the ambient coronal plasma. The oscillation is restricted to the vertical plane of the flux rope. The initial equilibrium flux rope is set into oscillation by a pulse of upflow of the ambient plasma. The theory is applied to two events of oscillating loops observed by the Transition Region and Coronal Explorer (TRACE). It is shown that the Lorentz force and drag with a reasonable value of the coupling coefficient (c d ) and without anomalous dissipation are able to accurately account for the observed damped oscillations. The analysis shows that the variations in the observed intensity can be explained by the minor radial expansion and contraction. For the two events, the values of the drag coefficient consistent with the observed damping times are in the range c d ≈2 – 5, with specific values being dependent on parameters such as the loop density, ambient magnetic field, and the loop geometry. This range is consistent with a previous MHD simulation study and with values used to reproduce the observed trajectories of coronal mass ejections (CMEs).  相似文献   
978.
R.W. Carlson  D.L. Judge 《Icarus》1975,24(4):395-399
The Pioneer 10 ultraviolet photometer observations of the Jovian hydrogen torus are analyzed to obtain the angular distribution. The cloud is asymmetric about Io, where the atoms presumably originate, with the greater density occurring in the trailing portion. A simple model which assumes Jeans escape from the atmosphere of Io is developed and compared to the observations. The results suggest that the exospheric temperature is high (~3000 K) and that the ionization lifetime of the cloud atoms is ~1 × 105 sec.  相似文献   
979.
Lunar physical librations and laser ranging   总被引:1,自引:0,他引:1  
The analysis of lunar laser ranging data requires very accurate calculations of the lunar physical librations. Libration terms are given which arise from the additive and planetary terms in the lunar theory. The large size of the recently discovered terms due to third degree gravitational harmonics will allow some of these harmonics to be measured, in addition to and, by laser ranging to the Moon. Combining the laser ranging determinations of = 630.6 ± 0.5 × 10–6 and = 226.4 ± 3.0 × 10–6 with lunar orbiter measurements ofC 20 andC 22 givesC/MR 2=0.395 -0.010 +0.006 . Numerical integration promises to be an effective method of calculating librations. Comparison of numerical integrations with analytic series indicates that the calculation of the series due to third and fourth degree harmonics is not yet as accurate as the more extensively developed second degree terms.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号