首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25737篇
  免费   493篇
  国内免费   263篇
测绘学   636篇
大气科学   1987篇
地球物理   5551篇
地质学   9085篇
海洋学   2064篇
天文学   5451篇
综合类   41篇
自然地理   1678篇
  2020年   142篇
  2019年   136篇
  2018年   318篇
  2017年   307篇
  2016年   435篇
  2015年   315篇
  2014年   444篇
  2013年   1221篇
  2012年   538篇
  2011年   810篇
  2010年   656篇
  2009年   930篇
  2008年   852篇
  2007年   805篇
  2006年   837篇
  2005年   738篇
  2004年   764篇
  2003年   720篇
  2002年   730篇
  2001年   595篇
  2000年   610篇
  1999年   581篇
  1998年   552篇
  1997年   568篇
  1996年   466篇
  1995年   461篇
  1994年   444篇
  1993年   411篇
  1992年   378篇
  1991年   329篇
  1990年   383篇
  1989年   299篇
  1988年   344篇
  1987年   377篇
  1986年   331篇
  1985年   486篇
  1984年   524篇
  1983年   532篇
  1982年   427篇
  1981年   423篇
  1980年   440篇
  1979年   385篇
  1978年   399篇
  1977年   350篇
  1976年   377篇
  1975年   344篇
  1974年   384篇
  1973年   369篇
  1972年   237篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 828 毫秒
711.
712.
The small Central American republic of El Salvador has experienced, on average, one destructive earthquake per decade during the last hundred years. The latest events occurred on 13 January and 13 February 2001, with magnitudes Mw 7.7 and 6.6, respectively. The two events, which were of different tectonic origin, follow the patterns of the seismicity of the region although neither event has a known precedent in the earthquake catalogue in terms of size and location. The earthquakes caused damage to thousands of traditionally built houses and triggered hundreds of landslides, which were the main causes of fatalities. The earthquakes have clearly demonstrated trends of increasing seismic risk in El Salvador due to rapid population expansion in areas of high shaking and landslide hazard, exacerbated by deforestation and uncontrolled urbanisation. The institutional mechanisms required for the control of land use and building practice are very weak and present a major obstacle to risk mitigation.  相似文献   
713.
In the present work, we built a mathematical model of polychlorinated biphenyl (PCB) bioaccumulation in Perna viridis, namely, a one-compartment model with a time dependent incorporation rate R (μg g−1 lipid per ppb water per day), with positive substrate cooperativity as the underlying physical mechanism. The temporal change of the PCB concentration Q (μg g−1 lipid) in the soft tissues of the mussel depends on the competition of the input rate RW and the output rate kQ, where W is the concentration of PCB in water (ppb water) and k is the elimination rate (per day). From our experimental data, k=0.181±0.017 d−1. The critical concentration in water Wc for positive substrate cooperativity was found to be 2.4 ppb. Below Wc, R is a constant. For a water concentration of 0.5 ppb Aroclor 1254, R=24.0±2.4 μg g−1 lipid ppb−1 d−1. Above Wc, positive substrate cooperativity comes into effect and R becomes a function of time and dependent on the concentration Q in a form RQ/(Q+δ). This is the case for a water concentration of 5 ppb Aroclor 1254, where γ=15.1 μg g−1 lipid ppb−1 d1 and δ≈200 μg g−1 lipid. From this model, the uptake is exponentially increasing when the PCB concentration in the mussel is small compared to 200 μg g−1 lipid, and hyperbolically increasing when the concentration is large compared to 200 μg g−1 lipid, which are consistent with the experimental data. The model is useful for understanding the true processes taking place during the bioaccumulation and for risk assessment with higher confidence. Future experimental data which challenge the present model are anticipated and in fact desirable for improvement and perfection of the model.  相似文献   
714.
Two end-member types of pyroclastic density current are commonly recognized: pyroclastic surges are dilute currents in which particles are carried in turbulent suspension and pyroclastic flows are highly concentrated flows. We provide scaling relations that unify these end-members and derive a segregation mechanism into basal concentrated flow and overriding dilute cloud based on the Stokes number (ST), the stability factor (ΣT) and the dense-dilute condition (DD). We recognize five types of particle behaviors within a fluid eddy as a function of ST and ΣT: (1) particles sediment from the eddy, (2) particles are preferentially settled out during the downward motion of the eddy, but can be carried during its upward motion, (3) particles concentrate on the periphery of the eddy, (4) particles settling can be delayed or ‘fast-tracked’ as a function of the eddy spatial distribution, and (5) particles remain homogeneously distributed within the eddy. We extend these concepts to a fully turbulent flow by using a prototype of kinetic energy distribution within a full eddy spectrum and demonstrate that the presence of different particle sizes leads to the density stratification of the current. This stratification may favor particle interactions in the basal part of the flow and DD determines whether the flow is dense or dilute. Using only intrinsic characteristics of the current, our model explains the discontinuous features between pyroclastic flows and surges while conserving the concept of a continuous spectrum of density currents.  相似文献   
715.
A series of effective stress analyses is carried out on the seismic performance of river dikes based on the case histories during the 1993 Hokkaido-Nansei-oki and 1995 Hyogoken-Nambu earthquakes in Japan. Seven case histories selected for the analyses involve a crest settlement ranging from none to 2.7 m in the dikes 3–6 m high with evidence of liquefaction at foundation soil. The effective stress model used is based on a multiple shear mechanism and was developed by one of the authors. The soil parameters are evaluated based on the site investigation and laboratory test results. The results of the analyses are basically consistent with the observed performance of the river dikes. In particular, the effective stress model shows a reasonable capability to reproduce the varying degree of settlements depending on the geotechnical conditions of foundation soils beneath the dikes. The analyses also indicate that the effect of a cohesive soil layer mixed with the liquefiable sand layers beneath the dikes can be a primary factor for reducing the liquefaction-induced deformation of dikes.  相似文献   
716.
The structure of the Mid-Atlantic Ridge at 5°S was investigated during a recent cruise with the FS Meteor. A major dextral transform fault (hereafter the 5°S FZ) offsets the ridge left-laterally by 80 km. Just south of the transform and to the west of the median valley, the inside corner (IC – the region bounded by the ridge and the active transform) is marked by a major massif, characterized by a corrugated upper surface. Fossil IC massifs can also be identified further to the west. Unusually, a massif almost as high as the IC massif also characterizes the outside corner (OC) south of the inactive fracture zone and to the east of the median valley. This OC massif has axis-parallel dimensions identical to the IC massif and both are bounded on their sides closest to the spreading axis by abrupt, steep slopes. An axial volcanic ridge is well developed in the median valley both south of the IC/OC massifs and in an abandoned rift valley to the east of the OC massif, but is absent along the new ridge-axis segment between the IC and OC massifs. Wide-angle seismic data show that between the massifs, the crust of the median valley thins markedly towards the FZ. These observations are consistent with the formation of the OC massif by the rifting of an IC core complex and the development of a new spreading centre between the IC and OC massifs. The split IC massif presents an opportunity to study the internal structure of the footwall of a detachment fault, from the corrugated fault surface to deeper beneath the fault, without recourse to drilling. Preliminary dredging recovered gabbros from the scarp slope of the rifted IC massif, and serpentinites and gabbros from the intersection of this scarp with the corrugated surface. This is compatible with a concentration of serpentinites along the detachment surface, even where the massif internally is largely plutonic in nature.  相似文献   
717.
The non-linear solvers in numerical solutions of water flow in variably saturated soils are prone to convergence difficulties. Many aspects can give rise to such difficulties and in this paper we address the gravity term and the prescribed-flux boundary in the Picard iteration. The problem of the gravity term in the Picard iteration is iteration-to-iteration oscillation as the gravity term is treated, by analogy with the time-step advance technique, ‘explicitly’ in the iteration. The proposed method for the gravity term is an improvement of the ‘implicit’ approach of Zhang and Ewen [Water Resour. Res. 36 (2000) 2777] by extending it to heterogeneous soil and approximating the inter-nodal hydraulic conductivity in the diffusive term and the gravity term with the same scheme. The prescribed-flux boundary in traditional methods also gives rise to iteration-to-iteration oscillation because there is no feedback to the flux in the solution at the new iteration. To reduce such oscillation, a new method is proposed to provide such a feedback to the flux. Comparison with traditional Picard and Newton iteration methods for a wide range of problems show that a combination of these two proposed methods greatly improves the stability and consequently the computational efficiency, making the use of small time step and/or under-relaxation solely for convergence unnecessary.  相似文献   
718.
--Models of combined Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data collected in the region of the Northridge earthquake indicate that significant afterslip on the main fault occurred following the earthquake. Additional shallow deformation occurred to the west of the main rupture plane. Both data sets are consistent with logarithmic time-dependent behavior following the earthquake indicative of afterslip rather than postseismic relaxation. Aftershocks account for only about 10% of the postseismic motion. The two data sets are complimentary in determining the postseismic processes. Fault afterslip and shallow deformation dominate the deformation field in the two years following the earthquake. Lower crustal deformation may play an important role later in the earthquake cycle.  相似文献   
719.
—?This paper reports results from two recent monitoring experiments in Wyoming. Broadband seismic recordings of kiloton class delay-fired cast blasts and instantaneous calibration shots in the Black Thunder coal mine were made at four azimuths at ranges from 1° to 2°. The primary focus of this experiment was to observe and to explain low-frequency signals that can be seen at all azimuths and should routinely propagate above noise to mid-regional distances where most events will be recorded by International Monitoring System (IMS) stations.¶The recordings clearly demonstrate that large millisecond delay-fired cast blasts routinely produce seismic signals that have significant spectral modulations below 10?Hz. These modulations are independent of time, the azimuth from the source and the orientation of the sensor. Low-frequency modulations below 5?Hz are seen beyond 9°. The modulations are not due to resonance as they are not produced by the calibration shots. Linear elastic modeling of the blasts that is guided by mine-blast reports fails to reproduce the fine detail of these modulations but clearly indicates that the enhanced “spectral roughness” is due to long interrow delays and source finiteness. The mismatch between the data and the synthetics is likely due to source processes, such as nonlinear interactions between shots, that are poorly understood and to other effects, such as variations of shot time and yield from planned values, that are known to be omnipresent but cannot be described accurately. A variant of the Automated Time-Frequency Discriminant (Hedlin, 1998b), which uses low-frequency spectral modulations, effectively separates these events from the calibration shots.¶The experiment also provided evidence that kiloton class cast blasts consistently yield energetic 2–10 second surface waves. The surface waves are strongly dependent on azimuth but are seen beyond 9°. Physical modeling of these events indicates that the surface waves are due mainly to the extended source duration and to a lesser extent to the slap-down of spalled material. The directionality is largely a path effect. A discriminant that is based on the partitioning of energy between surface and body waves routinely separates these events from the calibration shots.¶The Powder River Basin has essentially no natural seismic activity. How these mining events compare to earthquake observations remains to be determined.  相似文献   
720.
We have developed a new theoretical model of an eruption column that accounts for the re-entrainment of particles as they fall out of the laterally spreading umbrella cloud. The model illustrates how the mass flux of particles in the plume may increase with height in the plume, by a factor as large as 2.5 because of this recycling. Three important consequences are that (1) the critical velocity required to generate a buoyant eruption column for a given mass flux increases, (2) the total height of rise of the column may decrease, and (3) we infer that in relatively wind-free environments, for eruption columns near the conditions for collapse, the recycling of particles may lead to an unsteady oscillating motion of the plume, which, in time, may lead to the formation of interleaved fall and flow deposits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号