首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   12篇
  国内免费   3篇
测绘学   8篇
大气科学   22篇
地球物理   114篇
地质学   64篇
海洋学   11篇
天文学   21篇
综合类   3篇
自然地理   4篇
  2024年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   10篇
  2014年   18篇
  2013年   21篇
  2012年   18篇
  2011年   5篇
  2010年   7篇
  2009年   13篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1988年   6篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1969年   1篇
排序方式: 共有247条查询结果,搜索用时 31 毫秒
121.
Vijay P. Singh 《水文研究》2002,16(9):1831-1863
Kinematic wave solutions are derived for transport of a conservative non‐point‐source pollutant during a rainfall‐runoff event over an impervious plane. Rainfall is assumed to be steady, uniform and finite in duration. Prior to the start of rainfall, the pollutant is distributed uniformly over the plane. When rainfall occurs, the pollutant is washed off in a particular manner and the mixing of pollutant in the runoff water occurs either instantaneously or in a finite period of time under the assumption that the pollutant is soluble and is mixed completely in the runoff water. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
122.
East River, one of the major tributaries of Pearl River, is the major source of water supply for mega-cites within and in the vicinity of the Pearl River Delta, China. The availability and variability of water resources of the East River basin are therefore of practical importance. This study aims to investigate the probabilistic behavior of hydrological droughts in the East River basin using the trivariate Plackett copula. Daily streamflow data for the period of 1975–2009 from 3 hydrological stations in the East River basin are analyzed. Defining hydrological droughts by drought severity, duration, and minimum flow, secondary return periods are computed. Results show that the Plackett copula satisfactorily models bivariate and trivariate probability distributions of correlated drought variables. Results of risk evaluation show an increasing drought risk from the upper to the lower East River basin. This result is important for basin-scale water resources management in the East River basin.  相似文献   
123.
Assessment of debris flow hazards is important for developing measures to mitigate the loss of life and property and to minimize environmental damage. Two modified uncertainty models, Set Pair Analysis (SPA) and modified Set Pair Analysis (mSPA), were suggested to assess the regional debris flow hazard. A ease study was conducted in seven towns of the Beichuan county, Sichuan Province, China, to test and compare the application of these two models in debris flow hazard assessment. The results showed that mSPA only can fit for value-variables, but not for non value-variable assessment indexes, Furthermore, as for a given assessment index xi, mSPA only considers two cases, namely, when grade value increases with xi and when grade value decreases with xi. Thus, mSPA can not be used for debris flow hazard assessment but SPA is credible for the assessment because there are no limitations when using SPA model to assess the debris flow hazard. Therefore, in this study SPA is proposed for assessing debris flow hazard.  相似文献   
124.
Abstract

The study of precipitation trends is critically important for a country like India whose food security and economy are dependent on the timely availability of water. In this work, monthly, seasonal and annual trends of rainfall have been studied using monthly data series of 135 years (1871–2005) for 30 sub-divisions (sub-regions) in India. Half of the sub-divisions showed an increasing trend in annual rainfall, but for only three (Haryana, Punjab and Coastal Karnataka), this trend was statistically significant. Similarly, only one sub-division (Chattisgarh) indicated a significant decreasing trend out of the 15 sub-divisions showing decreasing trend in annual rainfall. In India, the monsoon months of June to September account for more than 80% of the annual rainfall. During June and July, the number of sub-divisions showing increasing rainfall is almost equal to those showing decreasing rainfall. In August, the number of sub-divisions showing an increasing trend exceeds those showing a decreasing trend, whereas in September, the situation is the opposite. The majority of sub-divisions showed very little change in rainfall in non-monsoon months. The five main regions of India showed no significant trend in annual, seasonal and monthly rainfall in most of the months. For the whole of India, no significant trend was detected for annual, seasonal, or monthly rainfall. Annual and monsoon rainfall decreased, while pre-monsoon, post-monsoon and winter rainfall increased at the national scale. Rainfall in June, July and September decreased, whereas in August it increased, at the national scale.

Citation Kumar, V., Jain, S. K. & Singh, Y. (2010) Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 55(4), 484–496.  相似文献   
125.
ABSTRACT

An adaptive multilevel correlation analysis, a kind of data-driven methodology, is proposed. The analysis is done by subdividing the time series into segments such that adjacent segments have significantly different mean values. It is shown that the proposed methodology can provide multilevel information about the correlation between two variables. An integrated coefficient with its significance testing is also proposed to summarize the correlation at each level. Using the adaptive multilevel correlation analysis methodology, the correlation between streamflow and water level is investigated for a case study, and the results indicate that real correlation might be far more complicated than the empirically constructed picture.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR E. Volpi  相似文献   
126.
ABSTRACT

Infiltration plays a fundamental role in streamflow, groundwater recharge, subsurface flow, and surface and subsurface water quality and quantity. In this study, adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM) and random forest (RF) models were used to determine cumulative infiltration and infiltration rate in arid areas in Iran. The input data were sand, clay, silt, density of soil and soil moisture, while the output data were cumulative infiltration and infiltration rate, the latter measured using a double-ring infiltrometer at 16 locations. The results show that SVM with radial basis kernel function better estimated cumulative infiltration (RMSE = 0.2791 cm) compared to the other models. Also, SVM with M4 radial basis kernel function better estimated the infiltration rate (RMSE = 0.0633 cm/h) than the ANFIS and RF models. Thus, SVM was found to be the most suitable model for modelling infiltration in the study area.  相似文献   
127.
We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station’s distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station’s truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM’s outputs which can be useful for addressing food security problems beforehand in critical basins around the world.  相似文献   
128.
This study aims to model the joint probability distribution of periodic hydrologic data using meta-elliptical copulas. Monthly precipitation data from a gauging station (410120) in Texas, US, was used to illustrate parameter estimation and goodness-of-fit for univariate drought distributions using chi-square test, Kolmogorov–Smirnov test, Cramer-von Mises statistic, Anderson-Darling statistic, modified weighted Watson statistic, and Liao and Shimokawa statistic. Pearson’s classical correlation coefficient r n , Spearman’s ρ n, Kendall’s τ, Chi-Plots, and K-Plots were employed to assess the dependence of drought variables. Several meta-elliptical copulas and Gumbel-Hougaard, Ali-Mikhail-Haq, Frank and Clayton copulas were tested to determine the best-fit copula. Based on the root mean square error and the Akaike information criterion, meta-Gaussian and t copulas gave a better fit. A bootstrap version based on Rosenblatt’s transformation was employed to test the goodness-of-fit for meta-Gaussian and t copulas. It was found that none of meta-Gaussian and t copulas considered could be rejected at the given significance level. The meta-Gaussian copula was employed to model the dependence, and these results were found satisfactory.  相似文献   
129.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
130.
In the present study, the trends in the reference evapotranspiration (ETO) estimated through the Penman‐Monteith method were investigated over the humid region of northeast (NE) India by using the Mann‐Kendall (MK) test after removing the effect of significant lag‐1 serial correlation from the time series of ETO by pre‐whitening. During the last 22 years, ETO has been found to decrease significantly at annual and seasonal time scales for 6 sites in NE India and NE India as a whole. The seasonal decreases in ETO have, however, been more significant in the pre‐monsoon season, indicating the presence of an element of a seasonal cycle. The decreases in ETO are mainly attributed to the net radiation and wind speed, which are also corroborated by the observed trends in these two parameters at almost all the times scales over most of the sites in NE India. The steady decrease in wind speed and decline in net radiation not only balanced the impact of the temperature increases on ETO, but may have actually caused the decreases in ETO over the humid region of northeast India. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号